ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Electromagnetic Radiation, Scattering, and Diffraction (IEEE Press Series on Electromagnetic Wave Theory)

دانلود کتاب تابش الکترومغناطیسی، پراکندگی و پراش (مجموعه مطبوعاتی IEEE در نظریه امواج الکترومغناطیسی)

Electromagnetic Radiation, Scattering, and Diffraction (IEEE Press Series on Electromagnetic Wave Theory)

مشخصات کتاب

Electromagnetic Radiation, Scattering, and Diffraction (IEEE Press Series on Electromagnetic Wave Theory)

ویرایش: 1 
نویسندگان: ,   
سری: The IEEE Press Series on Electromagnetic Wave Theory 
ISBN (شابک) : 1119810515, 9781119810513 
ناشر: Wiley-IEEE Press 
سال نشر: 2021 
تعداد صفحات: 1146 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 56 مگابایت 

قیمت کتاب (تومان) : 39,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Electromagnetic Radiation, Scattering, and Diffraction (IEEE Press Series on Electromagnetic Wave Theory) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تابش الکترومغناطیسی، پراکندگی و پراش (مجموعه مطبوعاتی IEEE در نظریه امواج الکترومغناطیسی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تابش الکترومغناطیسی، پراکندگی و پراش (مجموعه مطبوعاتی IEEE در نظریه امواج الکترومغناطیسی)

تابش الکترومغناطیسی، پراکندگی و پراش

یک متن در سطح فارغ التحصیلی برای دانشجویان متخصص در تابش امواج الکترومغناطیسی، پراکندگی، و پراش برای کاربردهای مهندسی کشف کنید

< p>در تابش الکترومغناطیسی، پراکندگی و پراش، نویسندگان برجسته Drs. Prabhakar H. Pathak و Robert J. Burkholder کاوش کاملی از رفتار میدان‌های الکترومغناطیسی در محیط‌های تابش، پراکندگی و امواج هدایت‌شونده ارائه می‌کنند. این کتاب از اصول اولیه به موضوع خود می پردازد و فرکانس های پایین و بالا را پوشش می دهد. این بر تفسیرهای فیزیکی پدیده های امواج الکترومغناطیسی همراه با ریاضیات اساسی آنها تأکید می کند.

نویسندگان بر اصول بنیادی تأکید می‌کنند و مثال‌های متعددی برای نشان دادن مفاهیم موجود در آن ارائه می‌کنند. دانش‌آموزانی که دارای پیش‌زمینه محدود الکترومغناطیسی در مقطع کارشناسی هستند، به سرعت و به طور سیستماتیک درک خود را از نظریه امواج الکترومغناطیسی ارتقا می‌دهند تا زمانی که بتوانند کار مفید و مهم در سطح فارغ‌التحصیلی را در مورد مسائل امواج الکترومغناطیسی تکمیل کنند.

تابش الکترومغناطیسی، پراکندگی و پراش همچنین به عنوان یک همراه عملی برای دانش‌آموزانی که سعی در شبیه‌سازی مشکلات با نرم‌افزار EM تجاری دارند و سعی در تفسیر بهتر نتایج آنها دارند، عمل می‌کند. خوانندگان همچنین از وسعت و عمق موضوعات بهره مند خواهند شد، مانند:

  • معادلات اساسی حاکم بر همه پدیده های الکترومغناطیسی (EM) در مقیاس های ماکروسکوپی به طور سیستماتیک ارائه می شوند. شرایط مرزی متحرک ثابت و نسبیتی توسعه یافته است. امواج در محیط های همسانگرد و ناهمسانگرد چند لایه مسطح تجزیه و تحلیل می شوند.
  • قضیه های EM معرفی شده و برای انواع مسائل مفید آنتن اعمال می شوند. تکنیک های مودال برای تجزیه و تحلیل ساختارهای موج هدایت شده و دوره ای ارائه شده است. نظریه پتانسیل و روش‌های تابع گرین برای درمان مشکلات EM داخلی و خارجی توسعه داده شده‌اند.
  • روش‌های فرکانس بالا مجانبی برای ارزیابی انتگرال‌های تابشی برای استخراج میدان‌های پرتو توسعه یافته‌اند. میدان های پرتو پراش لبه و سطح، و همچنین میدان های موج سطحی، نشتی و جانبی به دست می آیند. تجزیه و تحلیل پرتو جمعی برای آرایه های فازی آنتن منسجم محدود توسعه یافته است.
  • پرتوهای EM معرفی شده اند و توابع پایه مفیدی را ارائه می دهند. معادلات انتگرال و حل عددی آنها از طریق روش گشتاور توسعه داده شده است. روش چند قطبی سریع ارائه شده است. شکست فرکانس پایین مطالعه شده است. حالت‌های مشخصه مورد بحث قرار گرفته‌اند.

مناسب برای دانشجویان فارغ‌التحصیل در حال مطالعه تئوری الکترومغناطیسی، تابش الکترومغناطیسی، پراکندگی، و پراش یک منبع ارزشمند برای مهندسین الکترومغناطیسی حرفه‌ای و محققانی است که در این منطقه.


توضیحاتی درمورد کتاب به خارجی

Electromagnetic Radiation, Scattering, and Diffraction

Discover a graduate-level text for students specializing in electromagnetic wave radiation, scattering, and diffraction for engineering applications

In Electromagnetic Radiation, Scattering and Diffraction, distinguished authors Drs. Prabhakar H. Pathak and Robert J. Burkholder deliver a thorough exploration of the behavior of electromagnetic fields in radiation, scattering, and guided wave environments. The book tackles its subject from first principles and includes coverage of low and high frequencies. It stresses physical interpretations of the electromagnetic wave phenomena along with their underlying mathematics.

The authors emphasize fundamental principles and provide numerous examples to illustrate the concepts contained within. Students with a limited undergraduate electromagnetic background will rapidly and systematically advance their understanding of electromagnetic wave theory until they can complete useful and important graduate-level work on electromagnetic wave problems.

Electromagnetic Radiation, Scattering and Diffraction also serves as a practical companion for students trying to simulate problems with commercial EM software and trying to better interpret their results. Readers will also benefit from the breadth and depth of topics, such as:

  • Basic equations governing all electromagnetic (EM) phenomena at macroscopic scales are presented systematically. Stationary and relativistic moving boundary conditions are developed. Waves in planar multilayered isotropic and anisotropic media are analyzed.
  • EM theorems are introduced and applied to a variety of useful antenna problems. Modal techniques are presented for analyzing guided wave and periodic structures. Potential theory and Green's function methods are developed to treat interior and exterior EM problems.
  • Asymptotic High Frequency methods are developed for evaluating radiation Integrals to extract ray fields. Edge and surface diffracted ray fields, as well as surface, leaky and lateral wave fields are obtained. A collective ray analysis for finite conformal antenna phased arrays is developed.
  • EM beams are introduced and provide useful basis functions. Integral equations and their numerical solutions via the method of moments are developed. The fast multipole method is presented. Low frequency breakdown is studied. Characteristic modes are discussed.

Perfect for graduate students studying electromagnetic theory, Electromagnetic Radiation, Scattering, and Diffraction is an invaluable resource for professional electromagnetic engineers and researchers working in this area.



فهرست مطالب

Cover
Title Page
Copyright
Contents
About the Authors
Preface
Acknowledgments
1 Maxwell's Equations, Constitutive Relations, Wave Equation, and Polarization
	1.1 Introductory Comments
	1.2 Maxwell's Equations
	1.3 Constitutive Relations
	1.4 Frequency Domain Fields
	1.5 Kramers-Kronig Relationship
	1.6 Vector and Scalar Wave Equations
		1.6.1 Vector Wave Equations for EM Fields
		1.6.2 Scalar Wave Equations for EM Fields
	1.7 Separable Solutions of the Source-Free Wave Equation in Rectangular Coordinates and for Isotropic Homogeneous Media. Plane Waves
	1.8 Polarization of Plane Waves, Poincar•e Sphere, and Stokes Parameters
		1.8.1 Polarization States
		1.8.2 General Elliptical Polarization
		1.8.3 Decomposition of a Polarization State into Circularly Polarized Components
		1.8.4 Poincare Sphere for Describing Polarization States
	1.9 Phase and Group Velocity
	1.10 Separable Solutions of the Source-Free Wave Equation in Cylindrical and Spherical Coordinates and for Isotropic Homogeneous Media
		1.10.1 Source-Free Cylindrical Wave Solutions
		1.10.2 Source-Free Spherical Wave Solutions
		References
2 EM Boundary and Radiation Conditions
	2.1 EM Field Behavior Across a Boundary Surface
	2.2 Radiation Boundary Condition
	2.3 Boundary Conditions at a Moving Interface
		2.3.1 Nonrelativistic Moving Boundary Conditions
		2.3.2 Derivation of the Nonrelativistic Field Transformations
		2.3.3 EM Field Transformations Based on the Special Theory of Relativity
	2.4 Constitutive Relations for a Moving Medium
	References
3 Plane Wave Propagation in Planar Layered Media
	3.1 Introduction
	3.2 Plane Wave Reection from a Planar Boundary Between Two Di erent Media
		3.2.1 Perpendicular Polarization Case
		3.2.2 Parallel Polarization Case
		3.2.3 Brewster Angle θb
		3.2.4 Critical Angle θc
		3.2.5 Plane Wave Incident on a Lossy Half Space
		3.2.6 Doppler Shift for Wave Reection from a Moving Mirror
	3.3 Reection and Transmission of a Plane Wave Incident on a Planar Stratified Isotropic Medium Using a Transmission Matrix Approach
	3.4 Plane Waves in Anisotropic Homogeneous Media
	3.5 State Space Formulation for Waves in Planar Anisotropic Layered Media
		3.5.1 Development of State Space Based Field Equations
		3.5.2 Reection and Transmission of Plane Waves at the Interface Between Two Anisotropic Half Spaces
		3.5.3 Transmission Type Matrix Analysis of Plane Waves in Multilayered Anisotropic Media
	References
4 Plane Wave Spectral Representation for EM Fields
	4.1 Introduction
	4.2 PWS Development
	References
5 Electromagnetic Potentials and Fields of Sources in Unbounded Regions
	5.1 Introduction to Vector and Scalar Potentials
	5.2 Construction of the Solution for Ā
	5.3 Calculation of Fields from Potentials
	5.4 Time Dependent Potentials for Sources and Fields in Unbounded Regions
	5.5 Potentials and Fields of a Moving Point Charge
	5.6 Cerenkov Radiation
	5.7 Direct Calculation of Fields of Sources in Unbounded Regions Using a Dyadic Green's Function
		5.7.1 Fields of Sources in Unbounded, Isotropic, Homogeneous Media in Terms of a Closed Form Representation of Green's Dyadic, G0
		5.7.2 On the Singular Nature of G0(rr) for Observation Points Within the Source Region
		5.7.3 Representation of the Green's Dyadic G0 in Terms of an Integral in the Wavenumber (k) Space
		5.7.4 Electromagnetic Radiation by a Source in a General Bianisotropic Medium Using a Green's Dyadic Ga in k-Space
	References
6 Electromagnetic Field Theorems and Related Topics
	6.1 Conservation of Charge
	6.2 Conservation of Power
	6.3 Conservation of Momentum
	6.4 Radiation Pressure
	6.5 Duality Theorem
	6.6 Reciprocity Theorems and Conservation of Reactions
		6.6.1 The Lorentz Reciprocity Theorem
		6.6.2 Reciprocity Theorem for Bianisotropic Media
	6.7 Uniqueness Theorem
	6.8 Image Theorems
	6.9 Equivalence Theorems
		6.9.1 Volume Equivalence Theorem for EM Scattering
		6.9.2 A Surface Equivalence Theorem for EM Scattering
		6.9.3 A Surface Equivalence Theorem for Antennas
	6.10 Antenna Impedance
	6.11 Antenna Equivalent Circuit
	6.12 The Receiving Antenna Problem
	6.13 Expressions for Antenna Mutual Coupling Based on Generalized Reciprocity Theorems
		6.13.1 Circuit Form of the Reciprocity Theorem for Antenna Mutual Coupling
		6.13.2 A Mixed Circuit Field Form of a Generalized Reciprocity Theorem for Antenna Mutual Coupling
		6.13.3 A Mutual Admittance Expression for Slot Antennas
		6.13.4 Antenna Mutual Coupling, Reaction Concept, and Antenna Measurements
	6.14 Relation Between Antenna and Scattering Problems
		6.14.1 Exterior Radiation by a Slot Aperture Antenna Configuration
		6.14.2 Exterior Radiation by a Monopole Antenna Configuration
	6.15 Radar Cross Section
	6.16 Antenna Directive Gain
	6.17 Field Decomposition Theorem
	References
7 Modal Techniques for the Analysis of Guided Waves, Resonant Cavities, and Periodic Structures
	7.1 On Modal Analysis of Some Guided Wave Problems
	7.2 Classification of Modal Fields in Uniform Guiding Structures
		7.2.1 TEMz Guided waves
	7.3 TMz Guided Waves
	7.4 TEz Guided Waves
	7.5 Modal Expansions in Closed Uniform Waveguides
		7.5.1 TMz Modes
		7.5.2 TEz Modes
		7.5.3 Orthogonality of Modes in Closed Perfectly Conducting Uniform Waveguides
	7.6 Eect of Losses in Closed Guided Wave Structures
	7.7 Source Excited Uniform Closed Perfectly Conducting Waveguides
	7.8 An Analysis of Some Closed Metallic Waveguides
		7.8.1 Modes in a Parallel Plate Waveguide
		7.8.2 Modes in a Rectangular Waveguide
		7.8.3 Modes in a Circular Waveguide
		7.8.4 Coaxial Waveguide
		7.8.5 Obstacles and Discontinuities in Waveguides
		7.8.6 Modal Propagation Past a Slot in a Waveguide
	7.9 Closed and Open Waveguides Containing Penetrable Materials and Coatings
		7.9.1 Material-Loaded Closed PEC Waveguide
		7.9.2 Material Slab Waveguide
		7.9.3 Grounded Material Slab Waveguide
		7.9.4 The Goubau Line
		7.9.5 Circular Cylindrical Optical Fiber Waveguides
	7.10 Modal Analysis of Resonators
		7.10.1 Rectangular Waveguide Cavity Resonator
		7.10.2 Circular Waveguide Cavity Resonator
		7.10.3 Dielectric Resonators
	7.11 Excitation of Resonant Cavities
	7.12 Modal Analysis of Periodic Arrays
		7.12.1 Floquet Modal Analysis of an Infinite Planar Periodic Array of Electric Current Sources
		7.12.2 Floquet Modal Analysis of an Infinite Planar Periodic Array of Current Sources Configured in a Skewed Grid
	7.13 Higher-Order Floquet Modes and Associated Grating Lobe Circle Diagrams for Infinite Planar Periodic Arrays
		7.13.1 Grating Lobe Circle Diagrams
	7.14 On Waves Guided and Radiated by Periodic Structures
	7.15 Scattering by a Planar Periodic Array
		7.15.1 Analysis of the EM Plane Wave Scattering by an Infinite Periodic Slot Array in a Planar PEC Screen
	7.16 Finite 1-D and 2-D Periodic Array of Sources
		7.16.1 Analysis of Finite 1-D Periodic Arrays for the Case of Uniform Source Distribution and Far Zone Observation
		7.16.2 Analysis of Finite 2-D Periodic Arrays for the Case of Uniform Distribution and Far Zone Observation
		7.16.3 Floquet Modal Representation for Near and Far Fields of 1-D Nonuniform Finite Periodic Array Distributions
		7.16.4 Floquet Modal Representation for Near and Far Fields of 2-D Nonuniform Planar Periodic Finite Array Distributions
	References
8 Green's Functions for the Analysis of One-Dimensional Source-Excited Wave Problems
	8.1 Introduction to the Sturm-Liouville Form of Di erential Equation for 1-D Wave Problems
	8.2 Formulation of the Solution to the Sturm-Liouville Problem via the 1-D Green's Function Approach
	8.3 Conditions Under Which the Green's Function Is Symmetric
	8.4 Construction of the Green's Function G(x|x')
		8.4.1 General Procedure to Obtain G(x|x')
	8.5 Alternative Simplified Construction of G(x|x') Valid for the SymmetricCase
	8.6 On the Existence and Uniqueness of G(x|x')
	8.7 Eigenfunction Expansion Representation for G(x|x')
	8.8 Delta Function Completeness Relation and the Construction of Eigenfunctions from G(x|x') = U(x<)T(x)/W
	8.9 Explicit Representation of G(x|x') Using Step Functions
	References
9 Applications of One-Dimensional Green's Function Approach for the Analysis of Single and Coupled Set of EM Source Excited Transmission Lines
	9.1 Introduction
	9.2 Analytical Formulation for a Single Transmission Line Made Up of Two Conductors
	9.3 Wave Solution for the Two Conductor Lines When There Are No Impressed Sources Distributed Anywhere Within the Line
	9.4 Wave Solution for the Case of Impressed Sources Placed Anywhere on a Two Conductor Line
	9.5 Excitation of a Two Conductor Transmission Line by an Externally Incident lectromagnetic Wave
	9.6 A Matrix Green's Function Approach for Analyzing a Set of Coupled Transmission Lines
	9.7 Solution to the Special Case of Two Coupled Lines (N = 2) with Homogeneous Dirichlet or Neumann End Conditions
	9.8 Development of the Multiport Impedance Matrix for a Set of Coupled Transmission Lines
	9.9 Coupled Transmission Line Problems with Voltage Sources and Load Impedances at the End Terminals
	References
10 Green's Functions for the Analysis of Two- and Three-Dimensional Source-Excited Scalar and EM Vector Wave Problems
	10.1 Introduction
	10.2 General Formulation for Source-Excited 3-D Separable Scalar Wave Problems Using Green's Functions
	10.3 General Procedure for Construction of Scalar 2-D and 3-D Green’s Function in Rectangular Coordinates
	10.4 General Procedure for Construction of Scalar 2-D and 3-D Green's Functions in Cylindrical Coordinates
	10.5 General Procedure for Construction of Scalar 3-D Green's Functions in Spherical Coordinates
	10.6 General Formulation for Source-Excited 3-D Separable EM Vector Wave Problems Using Dyadic Green's Functions
	10.7 Some Specific Green's Functions for 2-D Problems
		10.7.1 Fields of a Uniform Electric Line Source
		10.7.2 Fields of an Infinite Periodic Array of Electric Line Sources
		10.7.3 Line Source-Excited PEC Circular Cylinder Green's Function
		10.7.4 A Cylindrical Wave Series Expansion for Ho(2)(k|p-p|)
		10.7.5 Line Source Excitation of a PEC Wedge
		10.7.6 Line Source Excitation of a PEC Parallel Plate Waveguide
		10.7.7 The Fields of a Line Dipole Source
		10.7.8 Fields of a Magnetic Line Source on an Infinite Planar Impedance Surface
		10.7.9 Fields of a Magnetic Line Dipole Source on an Infinite Planar Impedance Surface
		10.7.10 Circumferentially Propagating Surface Fields of a Line Source Excited Impedance Circular Cylinder
		10.7.11 Analysis of Circumferentially Propagating Waves for a Line Dipole Source-Excited Impedance Circular Cylinder
		10.7.12 Fields of a Traveling Wave Line Source
		10.7.13 Traveling Wave Line Source Excitation of a PEC Wedge and a PEC Cylinder
	10.8 Examples of Some Alternative Representations of Green's Functions for Scalar 3-D Point Source-Excited Cylinders, Wedges and Spheres
		10.8.1 3-D Scalar Point Source-Excited Circular Cylinder Green's Function
		10.8.2 3-D Scalar Point Source Excitation of a Wedge
		10.8.3 Angularly and Radially Propagating 3-D Scalar Point Source Green's Function for a Sphere
		10.8.4 Kontorovich{Lebedev Transform and MacDonald Based Approaches for Constructing an Angularly Propagating 3-D Point Source Scalar Wedge Green's Function
		10.8.5 Analysis of the Fields of a Vertical Electric or Magnetic Current Point Source on a PEC Sphere
		10.9 General Procedure for Construction of EM Dyadic Green's Functions for Source-Excited Separable Canonical Problems via Scalar Green's Functions
		10.9.1 Summary of Procedure to Obtain the EM Fields of Arbitrarily Oriented Point Sources Exciting Canonical Separable Configurations
		10.10 Completeness of the Eigenfunction Expansion of the Dyadic Green's Function at the Source Point
		References
11 Method of Factorization and the Wiener{Hopf Technique for Analyzing Two-Part EM Wave Problems
	11.1 The Wiener{Hopf Procedure
	11.2 The Dual Integral Equation Approach
	11.3 The Jones Method
	References
12 Integral Equation-Based Methods for the Numerical Solution of Nonseparable EM Radiation and Scattering Problems
	12.1 Introduction
	12.2 Boundary Integral Equations
		12.2.1 The Electric Field Integral Equation (EFIE)
		12.2.2 The Magnetic Field Integral Equation (MFIE)
		12.2.3 Combined Field and Combined Source Integral Equations
		12.2.4 Impedance Boundary Condition
		12.2.5 Boundary Integral Equation for a Homogeneous Material Volume
	12.3 Volume Integral Equations
	12.4 The Numerical Solution of Integral Equations
		12.4.1 The Minimum Square-Error Method
		12.4.2 The Method of Moments (MoM)
		12.4.3 Simplification of the MoM Impedance Matrix Integrals
		12.4.4 Expansion and Testing Functions
		12.4.5 Low-Frequency Break-Down
	12.5 Iterative Solution of Large MoM Matrices
		12.5.1 Fast Iterative Solution of MoM Matrix Equations
		12.5.2 The Fast Multipole Method (FMM)
		12.5.3 Multilevel FMM and Fast Fourier Transform FMM
	12.6 Antenna Modeling with the Method of Moments
	12.7 Aperture Coupling with the Method of Moments
	12.8 Physical Optics Methods
		12.8.1 Physical Optics for a PEC Surface
		12.8.2 Iterative Physical Optics
	References
13 Introduction to Characteristic Modes
	13.1 Introduction
	13.2 Characteristic Modes from the EFIE for a Conducting Surface
		13.2.1 Electric Field Integral Equation and Radiation Operator
		13.2.2 Eigenfunctions of the Electric Field Radiation Operator
		13.2.3 Characteristic Modes from the EFIE Impedance Matrix
	13.3 Computation of Characteristic Modes
	13.4 Solution of the EFIE Using Characteristic Modes
	13.5 Tracking Characteristic Modes with Frequency
	13.6 Antenna Excitation Using Characteristic Modes
	References
14 Asymptotic Evaluation of Radiation and Di raction Type Integrals for High Frequencies
	14.1 Introduction
	14.2 Steepest Descent Techniques for the Asymptotic Evaluation of Radiation Integrals
		14.2.1 Topology of the Exponent in the Integrand Containing a First-Order Saddle Point
		14.2.2 Asymptotic Evaluation of Integrals Containing a First-Order Saddle Point in Its Integrand Which Is Free of Singularities
		14.2.3 Asymptotic Evaluation of Integrals Containing a Higher-Order Saddle Point in Its Integrand Which Is Free of Singularities
		14.2.4 Pauli-Clemmow Method (PCM) for the Asymptotic Evaluation of Integrals Containing a First-Order Saddle Point Near a Simple Pole Singularity
		14.2.5 Van der Waerden Method (VWM) for the Asymptotic Evaluation of Integrals Containing a First-Order Saddle Point Near a Simple Pole Singularity
		14.2.6 Relationship Between PCM and VWM Leading to a Generalized PCM (or GPC) Solution
		14.2.7 An Extension of PCM for Asymptotic Evaluation of an Integral Containing a First-Order Saddle Point and a Nearby Double Pole
		14.2.8 An Extension of PCM for Asymptotic Evaluation of an Integral Containing a First-Order Saddle Point and Two Nearby First-Order Poles
		14.2.9 An Extension of VWM for Asymptotic Evaluation of an Integral Containing a First-Order Saddle Point and a Nearby Double Pole
		14.2.10 Nonuniform Asymptotic Evaluation of an Integral Containing a Saddle Point and a Branch Point
		14.2.11 Uniform Asymptotic Evaluation of an Integral Containing a Saddle Point and a Nearby Branch Point
	14.3 Asymptotic Evaluation of Integrals with End Points
		14.3.1 Watson's Lemma for Integrals
		14.3.2 Generalized Watson's Lemma for Integrals
		14.3.3 Integration by Parts for Asymptotic Evaluation of a Class of Integrals
	14.4 Asymptotic Evaluation of Radiation Integrals Based on the Stationary Phase Method
		14.4.1 Stationary Phase Evaluation of 1-D Infinite Integrals
		14.4.2 Nonuniform Stationary Phase Evaluation of 1-D Integrals with End Points
		14.4.3 Uniform Stationary Phase Evaluation of 1-D Integrals with a Nearby End Point
		14.4.4 Nonuniform Stationary Phase Evaluation of 2-D Infinite Integrals
	References
15 Physical and Geometrical Optics
	15.1 The Physical Optics (PO) Approximation for PEC Surfaces
	15.2 The Geometrical Optics (GO) Ray Field
	15.3 GO Transport Singularities
	15.4 Wavefronts, Stationary Phase, and GO
	15.5 GO Incident and Reected Ray Fields
	15.6 Uniform GO Valid at Smooth Caustics
	References
16 Geometrical and Integral Theories of Diraction
	16.1 Geometrical Theory of Di raction and Its Uniform Version (UTD)
	16.2 UTD for an Edge in an Otherwise Smooth PEC Surface
	16.3 UTD Slope Diraction for an Edge
	16.4 An Alternative Uniform Solution (the UAT) for Edge Di raction
	16.5 UTD Solutions for Fields of Sources in the Presence of Smooth PEC Convex Surfaces
		16.5.1 UTD Analysis of the Scattering by a Smooth, Convex Surface
		16.5.2 UTD for the Radiation by Antennas on a Smooth, Convex Surface
		16.5.3 UTD Analysis of the Surface Fields of Antennas on a Smooth, Convex Surface
	16.6 UTD for a Vertex
	16.7 UTD for Edge-Excited Surface Rays
	16.8 The Equivalent Line Current Method (ECM)
		16.8.1 Line Type ECM for Edge-Diracted Ray Caustic Field Analysis
	16.9 Equivalent Line Current Method for Interior PEC Waveguide Problems
		16.9.1 TEy Case
		16.9.2 TMy Case
	16.10 The Physical Theory of Di raction (PTD)
		16.10.1 PTD for Edged Bodies - A Canonical Edge Di raction Problem in the PTD Development
		16.10.2 Details of PTD for 3-D Edged Bodies
		16.10.3 Reduction of PTD to 2-D Edged Bodies
	16.11 On the PTD for Aperture Problems
	16.12 Time-Domain Uniform Geometrical Theory of Di raction (TD-UTD)
		16.12.1 Introductory Comments
		16.12.2 Analytic Time Transform (ATT)
		16.12.3 TD-UTD for a General PEC Curved Wedge
	References
17 Development of Asymptotic High-Frequency Solutions to Some Canonical Problems
	17.1 Introduction
	17.2 Development of UTD Solutions for Some Canonical Wedge Di raction Problems
		17.2.1 Scalar 2-D Line Source Excitation of a Wedge
		17.2.2 Scalar Plane Wave Excitation of a Wedge
		17.2.3 Scalar Spherical Wave Excitation of a Wedge
		17.2.4 EM Plane Wave Excitation of a PEC Wedge
		17.2.5 EM Conical Wave Excitation of a PEC Wedge
		17.2.6 EM Spherical Wave Excitation of a PEC Wedge
	17.3 Canonical Problem of Slope Diraction by a PEC Wedge
	17.4 Development of a UTD Solution for Scattering by a Canonical 2-D PEC Circular Cylinder and Its Generalization to a Convex Cylinder
		17.4.1 Field Analysis for the Shadowed Part of the Transition Region
		17.4.2 Field Analysis for the Illuminated Part of the Transition Region
	17.5 A Collective UTD for an Ecient Ray Analysis of the Radiation by Finite Conformal Phased Arrays on Infinite PEC Circular Cylinders
		17.5.1 Finite Axial Array on a Circular PEC Cylinder
		17.5.2 Finite Circumferential Array on a Circular PEC Cylinder
	17.6 Surface, Leaky, and Lateral Waves Associated with Planar Material Boundaries
		17.6.1 Introduction
		17.6.2 The EM Fields of a Magnetic Line Source on a Uniform Planar Impedance Surface
		17.6.3 EM Surface and Leaky Wave Fields of a Uniform Line Source over a Planar Grounded Material Slab
		17.6.4 An Analysis of the Lateral Wave Phenomena Arising in the Problem of a Vertical Electric Point Current Source over a Dielectric Half Space
	17.7 Surface Wave Di raction by a Planar, Two-Part Impedance Surface: Development of a Ray Solution
		17.7.1 TEz Case
		17.7.2 TMz Case
	17.8 Ray Solutions for Special Cases of Discontinuities in Nonconducting or Penetrable Boundaries
	References
18 EM Beams and Some Applications
	18.1 Introduction
	18.2 Astigmatic Gaussian Beams
		18.2.1 Paraxial Wave Equation Solutions
		18.2.2 2-D Beams
		18.2.3 3-D Astigmatic Gaussian Beams
		18.2.4 3-D Gaussian Beam from a Gaussian Aperture Distribution
		18.2.5 Reection of Astigmatic Gaussian Beams (GBs)
	18.3 Complex Source Beams and Relation to GBs
		18.3.1 Introduction to Complex Source Beams (GBs)
		18.3.2 Complex Source Beam from Scalar Green's Function
		18.3.3 Representation of Arbitrary EM Fields by a CSB Expansion
		18.3.4 Edge Di raction of an Incident CSB by a Curved Conducting Wedge
	18.4 Pulsed Complex Source Beams in the Time Domain
	References
A Coordinate Systems, Vectors, and Dyadics
B The Total Time Derivative of a Time Varying Flux Density Integrated Over a Moving Surface
C The Delta Function
D Transverse Fields in Terms of Axial Field Components for TMz and TEz Waves Guided Along z
E Two Di erent Representations for Partial Poisson Sum Formulas and Their Equivalence
F Derivation of 1-D Green's Second Identity
G Green's Second Identity for 3-D Scalar, Vector, and Vector-Dyadic Wave Fields
H Formal Decomposition and Factorization Formulas
I On the Transition Function F(+ka)
J On the Branch Cuts Commonly Encountered in the Evaluation of Spectral Wave Integrals
K On the Steepest Descent Path (SDP) for Spectral Wave Integrals
L Parameters Used in the Uniform GO Solution for the Lit and Shadow Sides of a Smooth Caustic
M Asymptotic Approximations of Hankel Functions for Large Argument and Various Orders
Index
Series Page
EULA




نظرات کاربران