دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Prabhakar H. Pathak, Robert J. Burkholder سری: The IEEE Press Series on Electromagnetic Wave Theory ISBN (شابک) : 1119810515, 9781119810513 ناشر: Wiley-IEEE Press سال نشر: 2021 تعداد صفحات: 1146 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 56 مگابایت
در صورت تبدیل فایل کتاب Electromagnetic Radiation, Scattering, and Diffraction (IEEE Press Series on Electromagnetic Wave Theory) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تابش الکترومغناطیسی، پراکندگی و پراش (مجموعه مطبوعاتی IEEE در نظریه امواج الکترومغناطیسی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
یک متن در سطح فارغ التحصیلی برای دانشجویان متخصص در تابش امواج الکترومغناطیسی، پراکندگی، و پراش برای کاربردهای مهندسی کشف کنید
< p>در تابش الکترومغناطیسی، پراکندگی و پراش، نویسندگان برجسته Drs. Prabhakar H. Pathak و Robert J. Burkholder کاوش کاملی از رفتار میدانهای الکترومغناطیسی در محیطهای تابش، پراکندگی و امواج هدایتشونده ارائه میکنند. این کتاب از اصول اولیه به موضوع خود می پردازد و فرکانس های پایین و بالا را پوشش می دهد. این بر تفسیرهای فیزیکی پدیده های امواج الکترومغناطیسی همراه با ریاضیات اساسی آنها تأکید می کند.نویسندگان بر اصول بنیادی تأکید میکنند و مثالهای متعددی برای نشان دادن مفاهیم موجود در آن ارائه میکنند. دانشآموزانی که دارای پیشزمینه محدود الکترومغناطیسی در مقطع کارشناسی هستند، به سرعت و به طور سیستماتیک درک خود را از نظریه امواج الکترومغناطیسی ارتقا میدهند تا زمانی که بتوانند کار مفید و مهم در سطح فارغالتحصیلی را در مورد مسائل امواج الکترومغناطیسی تکمیل کنند.
تابش الکترومغناطیسی، پراکندگی و پراش همچنین به عنوان یک همراه عملی برای دانشآموزانی که سعی در شبیهسازی مشکلات با نرمافزار EM تجاری دارند و سعی در تفسیر بهتر نتایج آنها دارند، عمل میکند. خوانندگان همچنین از وسعت و عمق موضوعات بهره مند خواهند شد، مانند:
مناسب برای دانشجویان فارغالتحصیل در حال مطالعه تئوری الکترومغناطیسی، تابش الکترومغناطیسی، پراکندگی، و پراش یک منبع ارزشمند برای مهندسین الکترومغناطیسی حرفهای و محققانی است که در این منطقه.
Discover a graduate-level text for students specializing in electromagnetic wave radiation, scattering, and diffraction for engineering applications
In Electromagnetic Radiation, Scattering and Diffraction, distinguished authors Drs. Prabhakar H. Pathak and Robert J. Burkholder deliver a thorough exploration of the behavior of electromagnetic fields in radiation, scattering, and guided wave environments. The book tackles its subject from first principles and includes coverage of low and high frequencies. It stresses physical interpretations of the electromagnetic wave phenomena along with their underlying mathematics.
The authors emphasize fundamental principles and provide numerous examples to illustrate the concepts contained within. Students with a limited undergraduate electromagnetic background will rapidly and systematically advance their understanding of electromagnetic wave theory until they can complete useful and important graduate-level work on electromagnetic wave problems.
Electromagnetic Radiation, Scattering and Diffraction also serves as a practical companion for students trying to simulate problems with commercial EM software and trying to better interpret their results. Readers will also benefit from the breadth and depth of topics, such as:
Perfect for graduate students studying electromagnetic theory, Electromagnetic Radiation, Scattering, and Diffraction is an invaluable resource for professional electromagnetic engineers and researchers working in this area.
Cover Title Page Copyright Contents About the Authors Preface Acknowledgments 1 Maxwell's Equations, Constitutive Relations, Wave Equation, and Polarization 1.1 Introductory Comments 1.2 Maxwell's Equations 1.3 Constitutive Relations 1.4 Frequency Domain Fields 1.5 Kramers-Kronig Relationship 1.6 Vector and Scalar Wave Equations 1.6.1 Vector Wave Equations for EM Fields 1.6.2 Scalar Wave Equations for EM Fields 1.7 Separable Solutions of the Source-Free Wave Equation in Rectangular Coordinates and for Isotropic Homogeneous Media. Plane Waves 1.8 Polarization of Plane Waves, Poincar•e Sphere, and Stokes Parameters 1.8.1 Polarization States 1.8.2 General Elliptical Polarization 1.8.3 Decomposition of a Polarization State into Circularly Polarized Components 1.8.4 Poincare Sphere for Describing Polarization States 1.9 Phase and Group Velocity 1.10 Separable Solutions of the Source-Free Wave Equation in Cylindrical and Spherical Coordinates and for Isotropic Homogeneous Media 1.10.1 Source-Free Cylindrical Wave Solutions 1.10.2 Source-Free Spherical Wave Solutions References 2 EM Boundary and Radiation Conditions 2.1 EM Field Behavior Across a Boundary Surface 2.2 Radiation Boundary Condition 2.3 Boundary Conditions at a Moving Interface 2.3.1 Nonrelativistic Moving Boundary Conditions 2.3.2 Derivation of the Nonrelativistic Field Transformations 2.3.3 EM Field Transformations Based on the Special Theory of Relativity 2.4 Constitutive Relations for a Moving Medium References 3 Plane Wave Propagation in Planar Layered Media 3.1 Introduction 3.2 Plane Wave Reection from a Planar Boundary Between Two Di erent Media 3.2.1 Perpendicular Polarization Case 3.2.2 Parallel Polarization Case 3.2.3 Brewster Angle θb 3.2.4 Critical Angle θc 3.2.5 Plane Wave Incident on a Lossy Half Space 3.2.6 Doppler Shift for Wave Reection from a Moving Mirror 3.3 Reection and Transmission of a Plane Wave Incident on a Planar Stratified Isotropic Medium Using a Transmission Matrix Approach 3.4 Plane Waves in Anisotropic Homogeneous Media 3.5 State Space Formulation for Waves in Planar Anisotropic Layered Media 3.5.1 Development of State Space Based Field Equations 3.5.2 Reection and Transmission of Plane Waves at the Interface Between Two Anisotropic Half Spaces 3.5.3 Transmission Type Matrix Analysis of Plane Waves in Multilayered Anisotropic Media References 4 Plane Wave Spectral Representation for EM Fields 4.1 Introduction 4.2 PWS Development References 5 Electromagnetic Potentials and Fields of Sources in Unbounded Regions 5.1 Introduction to Vector and Scalar Potentials 5.2 Construction of the Solution for Ā 5.3 Calculation of Fields from Potentials 5.4 Time Dependent Potentials for Sources and Fields in Unbounded Regions 5.5 Potentials and Fields of a Moving Point Charge 5.6 Cerenkov Radiation 5.7 Direct Calculation of Fields of Sources in Unbounded Regions Using a Dyadic Green's Function 5.7.1 Fields of Sources in Unbounded, Isotropic, Homogeneous Media in Terms of a Closed Form Representation of Green's Dyadic, G0 5.7.2 On the Singular Nature of G0(rr) for Observation Points Within the Source Region 5.7.3 Representation of the Green's Dyadic G0 in Terms of an Integral in the Wavenumber (k) Space 5.7.4 Electromagnetic Radiation by a Source in a General Bianisotropic Medium Using a Green's Dyadic Ga in k-Space References 6 Electromagnetic Field Theorems and Related Topics 6.1 Conservation of Charge 6.2 Conservation of Power 6.3 Conservation of Momentum 6.4 Radiation Pressure 6.5 Duality Theorem 6.6 Reciprocity Theorems and Conservation of Reactions 6.6.1 The Lorentz Reciprocity Theorem 6.6.2 Reciprocity Theorem for Bianisotropic Media 6.7 Uniqueness Theorem 6.8 Image Theorems 6.9 Equivalence Theorems 6.9.1 Volume Equivalence Theorem for EM Scattering 6.9.2 A Surface Equivalence Theorem for EM Scattering 6.9.3 A Surface Equivalence Theorem for Antennas 6.10 Antenna Impedance 6.11 Antenna Equivalent Circuit 6.12 The Receiving Antenna Problem 6.13 Expressions for Antenna Mutual Coupling Based on Generalized Reciprocity Theorems 6.13.1 Circuit Form of the Reciprocity Theorem for Antenna Mutual Coupling 6.13.2 A Mixed Circuit Field Form of a Generalized Reciprocity Theorem for Antenna Mutual Coupling 6.13.3 A Mutual Admittance Expression for Slot Antennas 6.13.4 Antenna Mutual Coupling, Reaction Concept, and Antenna Measurements 6.14 Relation Between Antenna and Scattering Problems 6.14.1 Exterior Radiation by a Slot Aperture Antenna Configuration 6.14.2 Exterior Radiation by a Monopole Antenna Configuration 6.15 Radar Cross Section 6.16 Antenna Directive Gain 6.17 Field Decomposition Theorem References 7 Modal Techniques for the Analysis of Guided Waves, Resonant Cavities, and Periodic Structures 7.1 On Modal Analysis of Some Guided Wave Problems 7.2 Classification of Modal Fields in Uniform Guiding Structures 7.2.1 TEMz Guided waves 7.3 TMz Guided Waves 7.4 TEz Guided Waves 7.5 Modal Expansions in Closed Uniform Waveguides 7.5.1 TMz Modes 7.5.2 TEz Modes 7.5.3 Orthogonality of Modes in Closed Perfectly Conducting Uniform Waveguides 7.6 Eect of Losses in Closed Guided Wave Structures 7.7 Source Excited Uniform Closed Perfectly Conducting Waveguides 7.8 An Analysis of Some Closed Metallic Waveguides 7.8.1 Modes in a Parallel Plate Waveguide 7.8.2 Modes in a Rectangular Waveguide 7.8.3 Modes in a Circular Waveguide 7.8.4 Coaxial Waveguide 7.8.5 Obstacles and Discontinuities in Waveguides 7.8.6 Modal Propagation Past a Slot in a Waveguide 7.9 Closed and Open Waveguides Containing Penetrable Materials and Coatings 7.9.1 Material-Loaded Closed PEC Waveguide 7.9.2 Material Slab Waveguide 7.9.3 Grounded Material Slab Waveguide 7.9.4 The Goubau Line 7.9.5 Circular Cylindrical Optical Fiber Waveguides 7.10 Modal Analysis of Resonators 7.10.1 Rectangular Waveguide Cavity Resonator 7.10.2 Circular Waveguide Cavity Resonator 7.10.3 Dielectric Resonators 7.11 Excitation of Resonant Cavities 7.12 Modal Analysis of Periodic Arrays 7.12.1 Floquet Modal Analysis of an Infinite Planar Periodic Array of Electric Current Sources 7.12.2 Floquet Modal Analysis of an Infinite Planar Periodic Array of Current Sources Configured in a Skewed Grid 7.13 Higher-Order Floquet Modes and Associated Grating Lobe Circle Diagrams for Infinite Planar Periodic Arrays 7.13.1 Grating Lobe Circle Diagrams 7.14 On Waves Guided and Radiated by Periodic Structures 7.15 Scattering by a Planar Periodic Array 7.15.1 Analysis of the EM Plane Wave Scattering by an Infinite Periodic Slot Array in a Planar PEC Screen 7.16 Finite 1-D and 2-D Periodic Array of Sources 7.16.1 Analysis of Finite 1-D Periodic Arrays for the Case of Uniform Source Distribution and Far Zone Observation 7.16.2 Analysis of Finite 2-D Periodic Arrays for the Case of Uniform Distribution and Far Zone Observation 7.16.3 Floquet Modal Representation for Near and Far Fields of 1-D Nonuniform Finite Periodic Array Distributions 7.16.4 Floquet Modal Representation for Near and Far Fields of 2-D Nonuniform Planar Periodic Finite Array Distributions References 8 Green's Functions for the Analysis of One-Dimensional Source-Excited Wave Problems 8.1 Introduction to the Sturm-Liouville Form of Di erential Equation for 1-D Wave Problems 8.2 Formulation of the Solution to the Sturm-Liouville Problem via the 1-D Green's Function Approach 8.3 Conditions Under Which the Green's Function Is Symmetric 8.4 Construction of the Green's Function G(x|x') 8.4.1 General Procedure to Obtain G(x|x') 8.5 Alternative Simplified Construction of G(x|x') Valid for the SymmetricCase 8.6 On the Existence and Uniqueness of G(x|x') 8.7 Eigenfunction Expansion Representation for G(x|x') 8.8 Delta Function Completeness Relation and the Construction of Eigenfunctions from G(x|x') = U(x<)T(x)/W 8.9 Explicit Representation of G(x|x') Using Step Functions References 9 Applications of One-Dimensional Green's Function Approach for the Analysis of Single and Coupled Set of EM Source Excited Transmission Lines 9.1 Introduction 9.2 Analytical Formulation for a Single Transmission Line Made Up of Two Conductors 9.3 Wave Solution for the Two Conductor Lines When There Are No Impressed Sources Distributed Anywhere Within the Line 9.4 Wave Solution for the Case of Impressed Sources Placed Anywhere on a Two Conductor Line 9.5 Excitation of a Two Conductor Transmission Line by an Externally Incident lectromagnetic Wave 9.6 A Matrix Green's Function Approach for Analyzing a Set of Coupled Transmission Lines 9.7 Solution to the Special Case of Two Coupled Lines (N = 2) with Homogeneous Dirichlet or Neumann End Conditions 9.8 Development of the Multiport Impedance Matrix for a Set of Coupled Transmission Lines 9.9 Coupled Transmission Line Problems with Voltage Sources and Load Impedances at the End Terminals References 10 Green's Functions for the Analysis of Two- and Three-Dimensional Source-Excited Scalar and EM Vector Wave Problems 10.1 Introduction 10.2 General Formulation for Source-Excited 3-D Separable Scalar Wave Problems Using Green's Functions 10.3 General Procedure for Construction of Scalar 2-D and 3-D Green’s Function in Rectangular Coordinates 10.4 General Procedure for Construction of Scalar 2-D and 3-D Green's Functions in Cylindrical Coordinates 10.5 General Procedure for Construction of Scalar 3-D Green's Functions in Spherical Coordinates 10.6 General Formulation for Source-Excited 3-D Separable EM Vector Wave Problems Using Dyadic Green's Functions 10.7 Some Specific Green's Functions for 2-D Problems 10.7.1 Fields of a Uniform Electric Line Source 10.7.2 Fields of an Infinite Periodic Array of Electric Line Sources 10.7.3 Line Source-Excited PEC Circular Cylinder Green's Function 10.7.4 A Cylindrical Wave Series Expansion for Ho(2)(k|p-p|) 10.7.5 Line Source Excitation of a PEC Wedge 10.7.6 Line Source Excitation of a PEC Parallel Plate Waveguide 10.7.7 The Fields of a Line Dipole Source 10.7.8 Fields of a Magnetic Line Source on an Infinite Planar Impedance Surface 10.7.9 Fields of a Magnetic Line Dipole Source on an Infinite Planar Impedance Surface 10.7.10 Circumferentially Propagating Surface Fields of a Line Source Excited Impedance Circular Cylinder 10.7.11 Analysis of Circumferentially Propagating Waves for a Line Dipole Source-Excited Impedance Circular Cylinder 10.7.12 Fields of a Traveling Wave Line Source 10.7.13 Traveling Wave Line Source Excitation of a PEC Wedge and a PEC Cylinder 10.8 Examples of Some Alternative Representations of Green's Functions for Scalar 3-D Point Source-Excited Cylinders, Wedges and Spheres 10.8.1 3-D Scalar Point Source-Excited Circular Cylinder Green's Function 10.8.2 3-D Scalar Point Source Excitation of a Wedge 10.8.3 Angularly and Radially Propagating 3-D Scalar Point Source Green's Function for a Sphere 10.8.4 Kontorovich{Lebedev Transform and MacDonald Based Approaches for Constructing an Angularly Propagating 3-D Point Source Scalar Wedge Green's Function 10.8.5 Analysis of the Fields of a Vertical Electric or Magnetic Current Point Source on a PEC Sphere 10.9 General Procedure for Construction of EM Dyadic Green's Functions for Source-Excited Separable Canonical Problems via Scalar Green's Functions 10.9.1 Summary of Procedure to Obtain the EM Fields of Arbitrarily Oriented Point Sources Exciting Canonical Separable Configurations 10.10 Completeness of the Eigenfunction Expansion of the Dyadic Green's Function at the Source Point References 11 Method of Factorization and the Wiener{Hopf Technique for Analyzing Two-Part EM Wave Problems 11.1 The Wiener{Hopf Procedure 11.2 The Dual Integral Equation Approach 11.3 The Jones Method References 12 Integral Equation-Based Methods for the Numerical Solution of Nonseparable EM Radiation and Scattering Problems 12.1 Introduction 12.2 Boundary Integral Equations 12.2.1 The Electric Field Integral Equation (EFIE) 12.2.2 The Magnetic Field Integral Equation (MFIE) 12.2.3 Combined Field and Combined Source Integral Equations 12.2.4 Impedance Boundary Condition 12.2.5 Boundary Integral Equation for a Homogeneous Material Volume 12.3 Volume Integral Equations 12.4 The Numerical Solution of Integral Equations 12.4.1 The Minimum Square-Error Method 12.4.2 The Method of Moments (MoM) 12.4.3 Simplification of the MoM Impedance Matrix Integrals 12.4.4 Expansion and Testing Functions 12.4.5 Low-Frequency Break-Down 12.5 Iterative Solution of Large MoM Matrices 12.5.1 Fast Iterative Solution of MoM Matrix Equations 12.5.2 The Fast Multipole Method (FMM) 12.5.3 Multilevel FMM and Fast Fourier Transform FMM 12.6 Antenna Modeling with the Method of Moments 12.7 Aperture Coupling with the Method of Moments 12.8 Physical Optics Methods 12.8.1 Physical Optics for a PEC Surface 12.8.2 Iterative Physical Optics References 13 Introduction to Characteristic Modes 13.1 Introduction 13.2 Characteristic Modes from the EFIE for a Conducting Surface 13.2.1 Electric Field Integral Equation and Radiation Operator 13.2.2 Eigenfunctions of the Electric Field Radiation Operator 13.2.3 Characteristic Modes from the EFIE Impedance Matrix 13.3 Computation of Characteristic Modes 13.4 Solution of the EFIE Using Characteristic Modes 13.5 Tracking Characteristic Modes with Frequency 13.6 Antenna Excitation Using Characteristic Modes References 14 Asymptotic Evaluation of Radiation and Di raction Type Integrals for High Frequencies 14.1 Introduction 14.2 Steepest Descent Techniques for the Asymptotic Evaluation of Radiation Integrals 14.2.1 Topology of the Exponent in the Integrand Containing a First-Order Saddle Point 14.2.2 Asymptotic Evaluation of Integrals Containing a First-Order Saddle Point in Its Integrand Which Is Free of Singularities 14.2.3 Asymptotic Evaluation of Integrals Containing a Higher-Order Saddle Point in Its Integrand Which Is Free of Singularities 14.2.4 Pauli-Clemmow Method (PCM) for the Asymptotic Evaluation of Integrals Containing a First-Order Saddle Point Near a Simple Pole Singularity 14.2.5 Van der Waerden Method (VWM) for the Asymptotic Evaluation of Integrals Containing a First-Order Saddle Point Near a Simple Pole Singularity 14.2.6 Relationship Between PCM and VWM Leading to a Generalized PCM (or GPC) Solution 14.2.7 An Extension of PCM for Asymptotic Evaluation of an Integral Containing a First-Order Saddle Point and a Nearby Double Pole 14.2.8 An Extension of PCM for Asymptotic Evaluation of an Integral Containing a First-Order Saddle Point and Two Nearby First-Order Poles 14.2.9 An Extension of VWM for Asymptotic Evaluation of an Integral Containing a First-Order Saddle Point and a Nearby Double Pole 14.2.10 Nonuniform Asymptotic Evaluation of an Integral Containing a Saddle Point and a Branch Point 14.2.11 Uniform Asymptotic Evaluation of an Integral Containing a Saddle Point and a Nearby Branch Point 14.3 Asymptotic Evaluation of Integrals with End Points 14.3.1 Watson's Lemma for Integrals 14.3.2 Generalized Watson's Lemma for Integrals 14.3.3 Integration by Parts for Asymptotic Evaluation of a Class of Integrals 14.4 Asymptotic Evaluation of Radiation Integrals Based on the Stationary Phase Method 14.4.1 Stationary Phase Evaluation of 1-D Infinite Integrals 14.4.2 Nonuniform Stationary Phase Evaluation of 1-D Integrals with End Points 14.4.3 Uniform Stationary Phase Evaluation of 1-D Integrals with a Nearby End Point 14.4.4 Nonuniform Stationary Phase Evaluation of 2-D Infinite Integrals References 15 Physical and Geometrical Optics 15.1 The Physical Optics (PO) Approximation for PEC Surfaces 15.2 The Geometrical Optics (GO) Ray Field 15.3 GO Transport Singularities 15.4 Wavefronts, Stationary Phase, and GO 15.5 GO Incident and Reected Ray Fields 15.6 Uniform GO Valid at Smooth Caustics References 16 Geometrical and Integral Theories of Diraction 16.1 Geometrical Theory of Di raction and Its Uniform Version (UTD) 16.2 UTD for an Edge in an Otherwise Smooth PEC Surface 16.3 UTD Slope Diraction for an Edge 16.4 An Alternative Uniform Solution (the UAT) for Edge Di raction 16.5 UTD Solutions for Fields of Sources in the Presence of Smooth PEC Convex Surfaces 16.5.1 UTD Analysis of the Scattering by a Smooth, Convex Surface 16.5.2 UTD for the Radiation by Antennas on a Smooth, Convex Surface 16.5.3 UTD Analysis of the Surface Fields of Antennas on a Smooth, Convex Surface 16.6 UTD for a Vertex 16.7 UTD for Edge-Excited Surface Rays 16.8 The Equivalent Line Current Method (ECM) 16.8.1 Line Type ECM for Edge-Diracted Ray Caustic Field Analysis 16.9 Equivalent Line Current Method for Interior PEC Waveguide Problems 16.9.1 TEy Case 16.9.2 TMy Case 16.10 The Physical Theory of Di raction (PTD) 16.10.1 PTD for Edged Bodies - A Canonical Edge Di raction Problem in the PTD Development 16.10.2 Details of PTD for 3-D Edged Bodies 16.10.3 Reduction of PTD to 2-D Edged Bodies 16.11 On the PTD for Aperture Problems 16.12 Time-Domain Uniform Geometrical Theory of Di raction (TD-UTD) 16.12.1 Introductory Comments 16.12.2 Analytic Time Transform (ATT) 16.12.3 TD-UTD for a General PEC Curved Wedge References 17 Development of Asymptotic High-Frequency Solutions to Some Canonical Problems 17.1 Introduction 17.2 Development of UTD Solutions for Some Canonical Wedge Di raction Problems 17.2.1 Scalar 2-D Line Source Excitation of a Wedge 17.2.2 Scalar Plane Wave Excitation of a Wedge 17.2.3 Scalar Spherical Wave Excitation of a Wedge 17.2.4 EM Plane Wave Excitation of a PEC Wedge 17.2.5 EM Conical Wave Excitation of a PEC Wedge 17.2.6 EM Spherical Wave Excitation of a PEC Wedge 17.3 Canonical Problem of Slope Diraction by a PEC Wedge 17.4 Development of a UTD Solution for Scattering by a Canonical 2-D PEC Circular Cylinder and Its Generalization to a Convex Cylinder 17.4.1 Field Analysis for the Shadowed Part of the Transition Region 17.4.2 Field Analysis for the Illuminated Part of the Transition Region 17.5 A Collective UTD for an Ecient Ray Analysis of the Radiation by Finite Conformal Phased Arrays on Infinite PEC Circular Cylinders 17.5.1 Finite Axial Array on a Circular PEC Cylinder 17.5.2 Finite Circumferential Array on a Circular PEC Cylinder 17.6 Surface, Leaky, and Lateral Waves Associated with Planar Material Boundaries 17.6.1 Introduction 17.6.2 The EM Fields of a Magnetic Line Source on a Uniform Planar Impedance Surface 17.6.3 EM Surface and Leaky Wave Fields of a Uniform Line Source over a Planar Grounded Material Slab 17.6.4 An Analysis of the Lateral Wave Phenomena Arising in the Problem of a Vertical Electric Point Current Source over a Dielectric Half Space 17.7 Surface Wave Di raction by a Planar, Two-Part Impedance Surface: Development of a Ray Solution 17.7.1 TEz Case 17.7.2 TMz Case 17.8 Ray Solutions for Special Cases of Discontinuities in Nonconducting or Penetrable Boundaries References 18 EM Beams and Some Applications 18.1 Introduction 18.2 Astigmatic Gaussian Beams 18.2.1 Paraxial Wave Equation Solutions 18.2.2 2-D Beams 18.2.3 3-D Astigmatic Gaussian Beams 18.2.4 3-D Gaussian Beam from a Gaussian Aperture Distribution 18.2.5 Reection of Astigmatic Gaussian Beams (GBs) 18.3 Complex Source Beams and Relation to GBs 18.3.1 Introduction to Complex Source Beams (GBs) 18.3.2 Complex Source Beam from Scalar Green's Function 18.3.3 Representation of Arbitrary EM Fields by a CSB Expansion 18.3.4 Edge Di raction of an Incident CSB by a Curved Conducting Wedge 18.4 Pulsed Complex Source Beams in the Time Domain References A Coordinate Systems, Vectors, and Dyadics B The Total Time Derivative of a Time Varying Flux Density Integrated Over a Moving Surface C The Delta Function D Transverse Fields in Terms of Axial Field Components for TMz and TEz Waves Guided Along z E Two Di erent Representations for Partial Poisson Sum Formulas and Their Equivalence F Derivation of 1-D Green's Second Identity G Green's Second Identity for 3-D Scalar, Vector, and Vector-Dyadic Wave Fields H Formal Decomposition and Factorization Formulas I On the Transition Function F(+ka) J On the Branch Cuts Commonly Encountered in the Evaluation of Spectral Wave Integrals K On the Steepest Descent Path (SDP) for Spectral Wave Integrals L Parameters Used in the Uniform GO Solution for the Lit and Shadow Sides of a Smooth Caustic M Asymptotic Approximations of Hankel Functions for Large Argument and Various Orders Index Series Page EULA