ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Electromagnetic Analysis and Condition Monitoring of Synchronous Generators

دانلود کتاب تجزیه و تحلیل الکترومغناطیسی و نظارت بر وضعیت ژنراتورهای سنکرون

Electromagnetic Analysis and Condition Monitoring of Synchronous Generators

مشخصات کتاب

Electromagnetic Analysis and Condition Monitoring of Synchronous Generators

ویرایش:  
نویسندگان:   
سری: IEEE Press Series on Power and Energy Systems 
ISBN (شابک) : 1119636078, 9781119636076 
ناشر: Wiley-IEEE Press 
سال نشر: 2022 
تعداد صفحات: 705
[707] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 42 Mb 

قیمت کتاب (تومان) : 55,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Electromagnetic Analysis and Condition Monitoring of Synchronous Generators به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تجزیه و تحلیل الکترومغناطیسی و نظارت بر وضعیت ژنراتورهای سنکرون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تجزیه و تحلیل الکترومغناطیسی و نظارت بر وضعیت ژنراتورهای سنکرون

تجزیه و تحلیل الکترومغناطیسی و نظارت بر وضعیت ژنراتورهای سنکرون

یک نمای کلی روشنگر و کامل از تجزیه و تحلیل الکترومغناطیسی و تشخیص خطا در ژنراتورهای سنکرون بزرگ را کشف کنید

در تحلیل الکترومغناطیسی و پایش وضعیت ژنراتورهای سنکرون، تیمی از مهندسان برجسته بررسی جامعی از تجزیه و تحلیل الکترومغناطیسی و تشخیص عیب ژنراتورهای سنکرون ارائه می‌دهند. نویسندگان با مقدمه‌ای بر چندین نوع ساختار ماشین سنکرون، به سراغ رایج‌ترین خطاهای موجود در ژنراتورهای سنکرون و تأثیرات آنها بر عملکرد می‌روند.

این کتاب شامل پوشش ابزارهای مختلف مدلسازی از جمله روش اجزای محدود، تابع سیم پیچی و مدار معادل مغناطیسی و همچنین انواع سیستم های نظارت بر سلامت با تمرکز بر مغناطیسی است. میدان، ولتاژ، جریان، شار شفت و ارتعاش. در نهایت، تحلیل الکترومغناطیسی و نظارت بر وضعیت ژنراتورهای سنکرون ابزارهای پردازش سیگنال را پوشش می‌دهد که می‌توانند به شناسایی الگوهای پنهان ناشی از خطاها و ابزارهای یادگیری ماشین کمک کنند که امکان نظارت بر وضعیت خودکار را فراهم می‌کنند.

این کتاب همچنین شامل موارد زیر است:

  • مقدمه ای کامل بر پایش وضعیت در ماشین های الکتریکی و آن اهمیت ژنراتورهای سنکرون
  • کاوش های جامع طبقه بندی ژنراتورهای سنکرون، از جمله آرایش آرمیچر، ساخت ماشین، و کاربردها
  • بحث های عملی در مورد انواع مختلف خطاهای الکتریکی و مکانیکی در ژنراتورهای سنکرون، از جمله خطاهای اتصال کوتاه، خطاهای خروج از مرکز، ناهماهنگی، خطاهای مربوط به هسته و خطاهای شکسته میله دمپر. span>
  • بررسی‌های عمیق مدل‌سازی ژنراتورهای سنکرون سالم و معیوب، شامل روش‌های تحلیلی و عددی

مناسب برای مهندسین شاغل در تجزیه و تحلیل ماشین های الکتریکی، تعمیر و نگهداری و تشخیص عیب، تحلیل الکترومغناطیسی و نظارت بر وضعیت ژنراتورهای سنکرون نیز یک منبعی ضروری برای اساتید و دانشجویان رشته مهندسی برق.


توضیحاتی درمورد کتاب به خارجی

Electromagnetic Analysis and Condition Monitoring of Synchronous Generators

Discover an insightful and complete overview of electromagnetic analysis and fault diagnosis in large synchronous generators

In Electromagnetic Analysis and Condition Monitoring of Synchronous Generators, a team of distinguished engineers delivers a comprehensive review of the electromagnetic analysis and fault diagnosis of synchronous generators. Beginning with an introduction to several types of synchronous machine structures, the authors move on to the most common faults found in synchronous generators and their impacts on performance.

The book includes coverage of different modeling tools, including the finite element method, winding function, and magnetic equivalent circuit, as well as various types of health monitoring systems focusing on the magnetic field, voltage, current, shaft flux, and vibration. Finally, Electromagnetic Analysis and Condition Monitoring of Synchronous Generators covers signal processing tools that can help identify hidden patterns caused by faults and machine learning tools enabling automated condition monitoring.

The book also includes:

  • A thorough introduction to condition monitoring in electric machines and its importance to synchronous generators
  • Comprehensive explorations of the classification of synchronous generators, including armature arrangement, machine construction, and applications
  • Practical discussions of different types of electrical and mechanical faults in synchronous generators, including short circuit faults, eccentricity faults, misalignment, core-related faults, and broken damper bar faults
  • In-depth examinations of the modeling of healthy and faulty synchronous generators, including analytical and numerical methods

Perfect for engineers working in electrical machine analysis, maintenance, and fault detection, Electromagnetic Analysis and Condition Monitoring of Synchronous Generators is also an indispensable resource for professors and students in electrical power engineering.



فهرست مطالب

Cover
Title Page
Copyright
Contents
Author Biographies
Preface
Chapter 1 Introduction
	1.1 Introduction to Condition Monitoring of Electric Machines
	1.2 Importance of Synchronous Generators
	1.3 Economic Aspects and Advantages
	1.4 Intention of the Book
	References
Chapter 2 Operation Principles, Structure, and Design of Synchronous Generators
	2.1 Introduction
		2.1.1 Rotating Magnetic Field of a Three‐Phase Synchronous Machine
	2.2 History of Synchronous Generators
		2.2.1 Advancement History of Synchronous Generators
			2.2.1.1 Up to the Year 1970
			2.2.1.2 Changes in the 1970s
			2.2.1.3 Developments in the 1980s
			2.2.1.4 Developments in the 1990s
			2.2.1.5 Developments After 2000
	2.3 Types and Constructions of Synchronous Machines
		2.3.1 Non‐salient or Round Rotor
		2.3.2 Salient‐Pole Rotor
		2.3.3 Synchronous Generators with Different Field Locations
		2.3.4 Different Schemes of Excitation Systems for Synchronous Generators
			2.3.4.1 DC Excitation
			2.3.4.2 Static Excitation System
			2.3.4.3 Brushless Excitation System
	2.4 Voltage Equation and Rated Power of the Synchronous Generator
	2.5 Synchronous Generator Model Parameters
	2.6 Different Operating Modes of Synchronous Machines
	2.7 Damper Bars in Synchronous Generators
	2.8 Losses and Efficiency in Synchronous Generators
	2.9 High‐Voltage Synchronous Generators
	2.10 Preliminary Design Considerations
		2.10.1 Output Equations
		2.10.2 Selecting Specific Magnetic Loading
		2.10.3 Selecting Specific Electric Loading
		2.10.4 Relationship between L and D
			2.10.4.1 Salient‐Pole Generators
			2.10.4.2 Turbo‐generators
			2.10.4.3 Short Circuit Ratio
		2.10.5 Air Gap Length
	2.11 Stator Design Considerations
		2.11.1 Stator Core Outer Diameter
		2.11.2 Leakage Reactance
		2.11.3 Stator Winding
			2.11.3.1 Double‐Layer Winding
			2.11.3.2 Stator Winding Resistance
			2.11.3.3 Eddy Current Losses in Conductors
			2.11.3.4 Eddy Current Loss Estimation
			2.11.3.5 Number of Slots
			2.11.3.6 Number of Turns per Phase
			2.11.3.7 Conductor Cross‐section
			2.11.3.8 Single‐turn Bar Winding
			2.11.3.9 Multi‐turn Windings
			2.11.3.10 Stator Winding Type Comparison
			2.11.3.11 Winding and Slot Insulation
			2.11.3.12 Stator Slot Dimensions
		2.11.4 Rotor Design of a Salient Pole Synchronous Generator
			2.11.4.1 Pole Shape
			2.11.4.2 Pole Dimensions
			2.11.4.3 Copper Losses of Field Windings
			2.11.4.4 Rotor Core Depth
			2.11.4.5 Ampere‐Turns of the No‐Load Field
		2.11.5 Design of the Rotor of Round‐Rotor Synchronous Generators
		2.11.6 Rotor Winding Design
		2.11.7 Synchronous Generator Excitation System Design Issues
	2.12 Summary
	References
Chapter 3 Transformed Models and Parameter Identification of Synchronous Generators
	3.1 Introduction
	3.2 Multi‐Phase Synchronous Generator Modeling Based on Park Equations
		3.2.1 Two‐Phase Synchronous Generators
		3.2.2 Three‐Phase Synchronous Generators
		3.2.3 Six‐Phase Synchronous Generators
	3.3 Mathematical Modeling
		3.3.1 Optimal Observer with Kalman Filters
	3.4 Parameter Estimation Algorithms
		3.4.1 Offline Parameter Estimation Techniques
			3.4.1.1 Frequency Domain‐Based Methods
			3.4.1.2 Time Domain‐Based Methods
			3.4.1.3 Finite Element Methods
			3.4.1.4 An Example of Offline Parameter Estimation Using the DC Standstill Test
		3.4.2 Online Parameter Estimation Techniques
			3.4.2.1 Numerical Methods
			3.4.2.2 Observer‐Based Methods
			3.4.2.3 Artificial Intelligence (AI)‐Based Methods
			3.4.2.4 An Example of Online Parameter Estimation Using the Affine Projection Algorithm
	3.5 Parameter Accuracy Increments by Considering Saturation
	3.6 Fault Detection Based on Parameter Deviation
		3.6.1 Principle of the Method
	3.7 Summary
	References
Chapter 4 Introduction to Different Types of Faults in Synchronous Generators
	4.1 Reasons for Condition Monitoring of Synchronous Generators
	4.2 Different Faults in Synchronous Generators
	4.3 Main Factors Leading to Electrical Machine Damage
	4.4 Major Destruction Factors of Stator Winding
		4.4.1 Thermal Stress
		4.4.2 Electrical Stress
		4.4.3 Mechanical Stresses
		4.4.4 Ambient Stress
	4.5 Common Faults in Stator Winding
	4.6 Rotor Field Winding Fault
	4.7 Eccentricity Faults
	4.8 Misalignment Faults
	4.9 Damper Winding Fault
	4.10 Summary
	References
Chapter 5 Laboratory Scale Implementation
	5.1 Introduction
	5.2 Salient Pole Synchronous Generator
	5.3 Induction Motor
	5.4 Gearbox
	5.5 Converter
	5.6 Rotor Magnetization Unit
	5.7 DC Power Supply
	5.8 Local Passive Load
	5.9 Sensors
		5.9.1 Hall‐Effect Sensors
		5.9.2 Search Coil
		5.9.3 Accelerometer
		5.9.4 Voltage Transformer
		5.9.5 Current Transformer
	5.10 Data Acquisition
	5.11 Fault Implementation
		5.11.1 Stator Short Circuit Fault
		5.11.2 Inter‐Turn Short Circuit Fault in a Rotor Field Winding
		5.11.3 Eccentricity Fault
		5.11.4 Misalignment Fault
		5.11.5 Broken Damper Bar Fault
	5.12 Noise Considerations
	5.13 Summary
	References
Chapter 6 Analytical Modeling Based on Wave and Permeance Method
	6.1 Introduction
	6.2 Eccentricity Fault Definition
	6.3 The Air Gap Magnetic Field
	6.4 The Electromotive Force in Stator Terminals
	6.5 The Stator Current
	6.6 Force Density and Unbalanced Magnetic Pull
	6.7 Stator Slotting Effects
	6.8 Magnetic Saturation Effects
	6.9 The Mixed Eccentricity Fault
	6.10 The Air Gap Magnetic Field
	6.11 Induced Electromotive Force in Stator Terminals
	6.12 Force Density and Unbalanced Magnetic Pull
	6.13 Short Circuit Modeling
	6.14 Air Gap Permeance Under a Short Circuit Fault
	6.15 Force Density and Unbalanced Magnetic Pull under a Rotor Inter‐turn Short Circuit Fault
	6.16 Summary
	References
Chapter 7 Analytical Modeling Based on Winding Function Methods
	7.1 Introduction
	7.2 History and Usage of the WFM
	7.3 Winding Function Modeling of a Synchronous Generator
	7.4 Mutual Inductance Calculation Between the Stator Phases
		7.4.1 Turn Function of Winding Phase B
		7.4.2 The Modified Winding Function of Phase A
		7.4.3 The Inverse Air Gap Function
	7.5 The Mutual Inductance Between the Stator and Rotor
		7.5.1 The Mutual Inductance Between the Stator Phase Winding and Rotor Field Winding
		7.5.2 The Mutual Inductance of the Stator Phase Winding and Rotor Damper Winding
	7.6 The Self Inductance of the Rotor
		7.6.1 The Self Inductance of the Rotor Field Winding
		7.6.2 The Self Inductance of the Rotor Damper Winding
		7.6.3 The Mutual Inductance Between the Rotor Field Winding and Damper Winding in the d‐Axis
		7.6.4 The Mutual Inductance Between the Rotor Field Winding and Damper Winding in the q‐Axis
	7.7 Derivative Forms of Synchronous Generator Inductances
		7.7.1 Derivative Form of Stator Mutual Inductance
		7.7.2 Derivative Form of Stator and Rotor Mutual Inductance
		7.7.3 Dynamic Equations Governing the Synchronous Machines
	7.8 A Practical Case Study
		7.8.1 Parameter Identification
			7.8.1.1 Resistance of the Stator Phase Winding
			7.8.1.2 Rotor Field Winding Resistance
			7.8.1.3 The Direct Axis (d) Reactance
			7.8.1.4 Sub‐transient Reactance of the Direct Axis
			7.8.1.5 Number of Turns of Rotor Field Windings
			7.8.1.6 Transient Direct Axis Reactance
			7.8.1.7 Number of d‐Axis Damper Winding Turns
	7.9 Healthy Case Simulation
		7.9.1 Stator and Rotor Winding Function
		7.9.2 Stator Phase Windings Mutual Inductances
		7.9.3 Mutual Inductance Between Stator and Rotor Windings
			7.9.3.1 Mutual Inductance Between Stator Phase Windings and Rotor Field Windings
			7.9.3.2 Mutual Inductance Between Stator Phase Windings and Damper Windings
		7.9.4 Dynamic Model Simulation in the Healthy Case
	7.10 Faulty Case Simulation
		7.10.1 Turn Functions and Inductances
		7.10.2 Dynamic Model Simulation in the Faulty Case
	7.11 Algorithm for Determination of the Magnetic Saturation Factor
		7.11.1 Algorithm
		7.11.2 Excitation Field Factors Plot
		7.11.3 Magnetic Equivalent Circuit Modeling Under the No‐Load Condition
	7.12 Eccentricity Fault Modeling Considering Magnetic Saturation Under Load Variations
		7.12.1 Calculation of Inverse Air Gap Length by Considering the Saturation Effect
		7.12.2 The Air Gap Length Calculation in the Presence of the Eccentricity Fault
		7.12.3 Mutual and Self Inductance Calculations under an Eccentricity Fault
	7.13 Dynamic Modeling under an Eccentricity Fault
	7.14 Summary
	References
Chapter 8 Finite Element Modeling of a Synchronous Generator
	8.1 Introduction
	8.2 Electromagnetic Field Computation
	8.3 Eddy Current and Core Loss Considerations
	8.4 Material Modeling
	8.5 Band Object, Motion Setup, and Boundary Conditions
	8.6 Mesh Consideration
	8.7 Time Steps and Simulation Run Time
	8.8 Transient and Steady‐State Modeling
	8.9 No‐Load and On‐Load Modeling
	8.10 2D and 3D FEM
	8.11 3D‐FE Equations of the Synchronous Generator
	8.12 Modeling of the Stator and Rotor Windings of the Generator and Its Load
		8.12.1 Modeling Movement of Movable Parts and Electromechanical Connections
	8.13 Air Gap Magnetic Field Measurements
	8.14 Stray Flux Measurements
	8.15 Eccentricity Fault Modeling
	8.16 Stator and Rotor Short Circuit Fault
		8.16.1 Phase‐to‐Earth Fault
		8.16.2 Phase‐to‐Phase Fault
		8.16.3 Inter‐turn Fault
		8.16.4 Inter‐turn Fault in Field Windings of the Synchronous Generator
	8.17 Broken Damper Bar Modeling
	8.18 Summary
	References
Chapter 9 Thermal Analysis of Synchronous Generators
	9.1 Introduction
	9.2 Overview of Thermal Modeling and Analysis
	9.3 Thermal Modeling and Analyzing Synchronous Generators
		9.3.1 Analytical Method
			9.3.1.1 Heat Conduction
			9.3.1.2 Heat Convection
			9.3.1.3 Heat Radiation
		9.3.2 Synchronous Generator Loss Calculation
		9.3.3 Numerical Methods
	9.4 Modeling and Analysis of Faulty Synchronous Generators
		9.4.1 Reasons for Faults in Synchronous Generators
			9.4.1.1 Single‐Phase Open‐Circuit Fault
			9.4.1.2 Conversion of Three‐Phase to Two‐Phase
			9.4.1.3 Three‐Phase Short Circuit Fault
	9.5 Summary
	References
Chapter 10 Signal Processing
	10.1 Introduction
	10.2 Signal
	10.3 Fast Fourier Transform
	10.4 Fast Fourier Transform with an Adjusted Sampling Frequency
	10.5 Short‐Time Fourier Transform
	10.6 Continuous Wavelet Transform
	10.7 Discrete Wavelet Transform
		10.7.1 Wavelet Energies
		10.7.2 Wavelet Entropy
	10.8 Hilbert–Huang Transform
		10.8.1 Hilbert Transform
		10.8.2 Empirical Mode Decomposition
	10.9 Time Series Data Mining
	10.10 Spectral Kurtosis and Kurtogram
		10.10.1 Kurtosis
		10.10.2 Spectral Kurtosis
		10.10.3 Kurtogram
	10.11 Noise
		10.11.1 Various Types of Noise
		10.11.2 Sources of Noise in Industry
		10.11.3 Noise Recognition
		10.11.4 Noise Effect on FFT
		10.11.5 Noise Effect on the STFT
		10.11.6 Noise Effect on CWT
		10.11.7 Noise Effect on DWT
		10.11.8 Noise Effect on TSDM
	10.12 Summary
	References
Chapter 11 Electromagnetic Signature Analysis of Electrical Faults
	11.1 Introduction
	11.2 General Introduction to Short Circuit Fault Detection Methods in Synchronous Machines
	11.3 Stator Short Circuit Fault Types
		11.3.1 Stator Unbalanced Phases
		11.3.2 Single‐Phase Fault to Ground
		11.3.3 Phase‐to‐Phase Fault
		11.3.4 Turn‐to‐Turn Short Circuit Fault
	11.4 Synchronous Generator Stator Fault Effects
	11.5 Fault Diagnosis Methods in the Stator Winding
		11.5.1 Invasive Methods
			11.5.1.1 Thermal Analysis
			11.5.1.2 Vibration Analysis
			11.5.1.3 Acoustic Noise Analysis
			11.5.1.4 Partial Discharge Analysis
			11.5.1.5 Output Gas Analysis
			11.5.1.6 Impulse Test
			11.5.1.7 Air Gap Magnetic Field Monitoring
		11.5.2 Non‐invasive Methods
			11.5.2.1 Field Current Signature Analysis
			11.5.2.2 Stator Winding Currents
			11.5.2.3 Current Park Vector
			11.5.2.4 Rotor Current
			11.5.2.5 Using the Negative Sequence Current of the Stator
			11.5.2.6 The Injected Negative Sequence Current
			11.5.2.7 Second Component of Current in the q‐Axis
			11.5.2.8 Stator Terminal Voltage
			11.5.2.9 Voltage Sequences
			11.5.2.10 Impedance Sequence
			11.5.2.11 Instantaneous Power Index
			11.5.2.12 Analysis of Transient Operation of the Salient Pole Synchronous Generator
			11.5.2.13 Stray Magnetic Field
			11.5.2.14 Axial Leakage Flux
	11.6 Stator Short Circuit Fault Detection of Brushless Synchronous Machines
	11.7 Stator Short Circuit Fault Detection of Powerformers
	11.8 Stator Short Circuit Fault Detection of Turbo‐generators
		11.8.1 The Inter‐turn Fault Detection Algorithm of the Stator Winding
			11.8.1.1 Circuit Analysis
			11.8.1.2 Turn‐to‐Turn Fault
			11.8.1.3 Factors Affecting the Proposed Index
			11.8.1.4 External Phase‐to‐Phase Fault
			11.8.1.5 Internal Phase‐to‐Phase Fault
			11.8.1.6 Turn‐to‐Turn Fault Detection Algorithm
			11.8.1.7 Increasing the Gradient of the Current
			11.8.1.8 Current Category Determination
			11.8.1.9 Calculating the Difference Between Two Currents
		11.8.2 Algorithm Applications
			11.8.2.1 Single‐Phase to Ground Fault
			11.8.2.2 Inter‐Turn Fault
			11.8.2.3 Internal Phase‐to‐Phase Fault
			11.8.2.4 External Phase‐to‐Phase Fault
			11.8.2.5 Transformer Inrush Current
			11.8.2.6 Performance of the Proposed Algorithm in the Face of Various Types of Faults
	11.9 Inter‐Turn Short Circuit Fault in Rotor Field Winding
		11.9.1 Introduction
		11.9.2 Invasive Method
			11.9.2.1 Airgap Magnetic Field
			11.9.2.2 Polar Diagram
			11.9.2.3 Application of the Frequency Spectrum in the Inter‐turns Short Circuit Fault Using the Air Gap Magnetic Field
		11.9.3 Non‐invasive Methods
			11.9.3.1 The Stator and Rotor Current
			11.9.3.2 Stator Voltage
			11.9.3.3 Rotor Coil Impedance Index
			11.9.3.4 Electromagnetic Power Index
			11.9.3.5 Generator Capability Curve
			11.9.3.6 Shaft Flux
			11.9.3.7 Stray Magnetic Field
	11.10 Summary
	References
Chapter 12 Electromagnetic Signature Analysis of Mechanical Faults
	12.1 Introduction
	12.2 Eccentricity Faults
		12.2.1 Invasive Detection Methods
			12.2.1.1 Air Gap Magnetic Field
			12.2.1.2 Frequency Analysis of the Air Gap Magnetic Field
			12.2.1.3 Spectral Kurtosis
		12.2.2 Non‐invasive Detection Methods
			12.2.2.1 Inductance Variation Index
			12.2.2.2 Harmonics of the Stator Current
			12.2.2.3 Harmonics of the Open‐Circuit Voltage of the Stator Winding
			12.2.2.4 Analysis of the Space Vector Loci of the Electromotive Force
			12.2.2.5 The Harmonic Component in the Current of the Rotor Field Winding
			12.2.2.6 Stator Split‐Phase Current
			12.2.2.7 Stator Voltage Subharmonics Index
			12.2.2.8 Shaft Voltage
			12.2.2.9 Stray Magnetic Field
	12.3 Stator Core Fault
		12.3.1 Introduction
		12.3.2 Core Loss
		12.3.3 Rated Flux
		12.3.4 EL‐CID Method
	12.4 Broken Damper Bar Fault
		12.4.1 Introduction
		12.4.2 Single‐Phase Rotation Test
		12.4.3 Air Gap Magnetic Field
		12.4.4 Stray Magnetic Field Monitoring
		12.4.5 Stator Current
		12.4.6 Rotor Field Winding Voltage
	12.5 Summary
	References
Chapter 13 Vibration Monitoring
	13.1 Introduction
	13.2 Condition Monitoring Using Vibration
	13.3 Vibration in Salient‐Pole Synchronous Generators
	13.4 Introduction to Utilized Terms in Vibration Analysis
		13.4.1 Time Harmonics
		13.4.2 Spatial Harmonics
		13.4.3 Mode Number and Deformation
		13.4.4 Resonance
	13.5 Force and Vibration Analysis
		13.5.1 Modal Analysis
		13.5.2 Analysis of a Healthy Generator
			13.5.2.1 Time‐Domain Distributions of the Magnetic Field
			13.5.2.2 Spatial‐Domain Distributions of the Magnetic Field
			13.5.2.3 Mechanical Analysis
		13.5.3 Analysis of a Synchronous Generator under an Interturn Short Circuit Fault
			13.5.3.1 Time‐Domain Distributions of the Magnetic Field
			13.5.3.2 Spatial Domain Distributions of the Magnetic Field
			13.5.3.3 Mechanical Analysis
		13.5.4 Analysis of a Synchronous Generator under Static Eccentricity
			13.5.4.1 Time‐Domain Distributions of a Magnetic Field
			13.5.4.2 Spatial‐Domain Distributions of the Magnetic Field
			13.5.4.3 Mechanical Analysis
		13.5.5 Load Effect
		13.5.6 Comparison of Fault Impacts on the Magnetic and Vibration Signatures
	13.6 Summary
	References
Chapter 14 Application of Machine Learning in Fault Detection
	14.1 Introduction
	14.2 Supervised Learning
		14.2.1 Feature Extraction and Selection
			14.2.1.1 Time Series Feature Extraction Based on Scalable Hypothesis Tests (TSFRESH)
		14.2.2 Data Set Balancing
		14.2.3 Training and Testing
		14.2.4 Evaluation Metrics
	14.3 Ensemble Learners
	14.4 Logistic Regression
	14.5 K‐Nearest Neighbors
	14.6 Support Vector Machine
	14.7 Decision Tree Learning
	14.8 Random Forest
	14.9 Boosted Trees
	14.10 Gradient Boost Decision Trees
	14.11 Artificial Neural Network
		14.11.1 Perceptron
		14.11.2 Multi‐Layer Perceptron
		14.11.3 Activation Function
		14.11.4 Training
	14.12 Other Artificial Neural Networks
	14.13 Real Case Application
		14.13.1 Data Pre‐processing
		14.13.2 Feature Extraction
			14.13.2.1 Fast Fourier Transform
			14.13.2.2 DWT Wavelet Energies
			14.13.2.3 TSFRESH
		14.13.3 Exploratory Data Analysis
		14.13.4 Feature Selection
			14.13.4.1 Random Forest Feature Selection
			14.13.4.2 Time Series Feature Extraction Based on Scalable Hypothesis Tests (TSFRESH)
			14.13.4.3 Summary of Feature Selection
		14.13.5 Fault Detection
			14.13.5.1 Initial Hyper‐parameter Choices
			14.13.5.2 Metrics
			14.13.5.3 Cross‐Validation
			14.13.5.4 Standardization
			14.13.5.5 Results
		14.13.6 Feature Selection and Reduction Performance
		14.13.7 Hyper‐parameter Optimization and Selection
		14.13.8 Stacking Classifiers
		14.13.9 Final Classifier
			14.13.9.1 Feature Usefulness
			14.13.9.2 Fault Severity Assessment
		14.13.10 Data Management and Pre‐processing
		14.13.11 Feature Extraction and Importance
		14.13.12 Feature Selection and Target Leakage
		14.13.13 Classifier Selection
		14.13.14 Performance
		14.13.15 Real‐World Validity
		14.13.16 Real‐World Applicability
		14.13.17 Anomaly Detection
		14.13.18 Simulated Data Generation
	14.14 Summary
	References
Chapter 15 Insulation Defect Monitoring
	15.1 Introduction
	15.2 History and Advantages of Using Partial Discharge Techniques
	15.3 Electrical Machine Fault Generation Factors
	15.4 Rotating Machine Insulation System
		15.4.1 Rotor Insulation System
		15.4.2 Stator Insulation System
	15.5 PD Types in Rotating Machines
		15.5.1 Internal Discharge
			15.5.1.1 Internal Void
			15.5.1.2 Internal Delamination
			15.5.1.3 Delamination Between the Conductor and Insulation
			15.5.1.4 Electrical Treeing
		15.5.2 Slot Discharges
		15.5.3 Discharges in the End Winding
			15.5.3.1 Surface Discharge
			15.5.3.2 Conductive Particles
			15.5.3.3 Phase‐to‐Phase Discharge
		15.5.4 Arcing and Sparking
			15.5.4.1 Arcing at Broken Conductors
			15.5.4.2 Vibration Sparking
	15.6 Risk Assessment of Different Partial Discharge Faults
	15.7 Frequency Characteristics of Current Pulses
	15.8 Measurement of PD Signals
	15.9 Online Measurements of PD in Rotating Electrical Machines
		15.9.1 Electrical Measurement of Partial Discharge
			15.9.1.1 Capacitive Coupling Method
			15.9.1.2 Implement Capacitive Coupler Method
			15.9.1.3 Current Transformer
			15.9.1.4 Antenna Monitoring Method
		15.9.2 Acoustic Measurement of PD
		15.9.3 Chemical Measurement of PD
		15.9.4 Visual Inspection and Optical Measurement of PD
	15.10 Summary
	References
Chapter 16 Noise Rejection Methods and Data Interpretation
	16.1 Introduction
	16.2 Noise Rejection in Online Measurement
	16.3 Noise Sources in Generators
	16.4 Different Methods for Denoising
		16.4.1 Restricting the Frequency Range
		16.4.2 Pulse Shape Analysis
		16.4.3 Noise Rejection by Propagation Time
		16.4.4 Residue of Two Channel Signals
		16.4.5 Gating
		16.4.6 Three‐Phase Amplitude Relation Diagram (3PARD)
		16.4.7 Current Signal Features
		16.4.8 Noise Rejection Using Fourier Transform
			16.4.8.1 Principles of Noise Rejection Using Fourier Transform
		16.4.9 Denoising Using Wavelet Transform
	16.5 Data Interpretation
		16.5.1 Data Interpretation in the Low‐Frequency Range
		16.5.2 Data Interpretation in VHF and UHF Measurements
		16.5.3 Data Interpretation Based on Artificial Intelligence
	16.6 Separating PD Sources
	16.7 Summary
	References
Index
IEEE Press Series on Power and Energy Systems
EULA




نظرات کاربران