دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [4 ed.]
نویسندگان: J. R. Barber
سری: Solid Mechanics and Its Applications, 172
ISBN (شابک) : 3031152131, 9783031152139
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 641
[642]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Elasticity به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب قابلیت ارتجاعی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بر کاربردهای مهندسی کشش تأکید دارد. این یک کتاب درسی سال اول کارشناسی ارشد در کشش خطی است. این با در نظر گرفتن خواننده مهندسی عملی نوشته شده است، وابستگی به دانش قبلی مکانیک جامدات، مکانیک پیوسته یا ریاضیات به حداقل رسیده است. نمونهها معمولاً تا عبارات نهایی برای میدانهای تنش و جابجایی کار میکنند تا پیامدهای مهندسی نتایج را کشف کنند. این ویرایش چهارم مطالب جدید و اصلاح شده ای را ارائه می دهد، به ویژه در مورد مسئله گنجاندن اشلبی و کشش ناهمسانگرد.
موضوعات پوشش داده شده با نگاهی به کاربردهای تحقیقاتی مدرن در مکانیک شکست، کامپوزیت انتخاب شده اند. مواد، تریبولوژی و روش های عددی. بنابراین، توجه قابل توجهی به مشکلات ترک و تماس، مشکلات مربوط به رابط بین محیط های غیر مشابه، ترموالاستیسیته، میدان های تنش مجانبی منفرد و مشکلات سه بعدی داده می شود.
This book emphasizes engineering applications of elasticity. This is a first-year graduate textbook in linear elasticity. It is written with the practical engineering reader in mind, dependence on previous knowledge of solid mechanics, continuum mechanics or mathematics being minimized. Examples are generally worked through to final expressions for the stress and displacement fields in order to explore the engineering consequences of the results. This 4th edition presents new and revised material, notably on the Eshelby inclusion problem and anisotropic elasticity.
The topics covered are chosen with a view to modern research applications in fracture mechanics, composite materials, tribology and numerical methods. Thus, significant attention is given to crack and contact problems, problems involving interfaces between dissimilar media, thermoelasticity, singular asymptotic stress fields and three-dimensional problems.
Preface Contents Part I General Considerations 1 Introduction 1.1 Notation for Stress and Displacement 1.1.1 Stress 1.1.2 Index and vector notation and the summation convention 1.1.3 Vector operators in index notation 1.1.4 Vectors, tensors and transformation rules 1.1.5 Principal stresses and von Mises stress 1.1.6 Displacement 1.2 Strains and their Relation to Displacements 1.2.1 Tensile strain 1.2.2 Rotation and shear strain 1.2.3 Transformation of coördinates 1.2.4 Definition of shear strain 1.3 Stress-strain Relations 1.3.1 Isotropic constitutive law 1.3.2 Lamé's constants 1.3.3 Dilatation and bulk modulus 1.3.4 Deviatoric stress Problems 2 Equilibrium and Compatibility 2.1 Equilibrium Equations 2.2 Compatibility Equations 2.2.1 The significance of the compatibility equations 2.3 Equilibrium Equations in terms of Displacements Problems Part II Two-dimensional Problems 3 Plane Strain and Plane Stress 3.1 Plane Strain 3.1.1 The corrective solution 3.1.2 Saint-Venant's principle 3.2 Plane Stress 3.2.1 Generalized plane stress 3.2.2 Relationship between plane stress and plane strain Problems 4 Stress Function Formulation 4.1 Choice of a Suitable Form 4.2 The Airy Stress Function 4.2.1 Transformation of coördinates 4.2.2 Non-zero body forces 4.3 The Governing Equation 4.3.1 The compatibility condition 4.3.2 Method of solution 4.3.3 Reduced dependence on elastic constants Problems 5 Problems in Rectangular Coördinates 5.1 Biharmonic Polynomial Functions 5.1.1 Second and third degree polynomials 5.2 Rectangular Beam Problems 5.2.1 Bending of a beam by an end load 5.2.2 Higher order polynomials — a general strategy 5.2.3 Manual solutions — symmetry considerations 5.3 Fourier Series and Transform Solutions 5.3.1 Choice of form 5.3.2 Fourier transforms Problems 6 End Effects 6.1 Decaying Solutions 6.2 The Corrective Solution 6.2.1 Separated-variable solutions 6.2.2 The eigenvalue problem 6.3 Other Saint-Venant Problems 6.4 Mathieu's Solution Problems 7 Body Forces 7.1 Stress Function Formulation 7.1.1 Conservative vector fields 7.1.2 The compatibility condition 7.2 Particular Cases 7.2.1 Gravitational loading 7.2.2 Inertia forces 7.2.3 Quasi-static problems 7.2.4 Rigid-body kinematics 7.3 Solution for the Stress Function 7.3.1 The rotating rectangular bar 7.3.2 Solution of the governing equation 7.4 Rotational Acceleration 7.4.1 The circular disk 7.4.2 The rectangular bar 7.4.3 Weak boundary conditions and the equation of motion Problems 8 Problems in Polar Coördinates 8.1 Expressions for Stress Components 8.2 Strain Components 8.3 Fourier Series Expansion 8.3.1 Satisfaction of boundary conditions 8.3.2 Circular hole in a shear field 8.3.3 Degenerate cases 8.4 The Michell Solution 8.4.1 Hole in a tensile field Problems 9 Calculation of Displacements 9.1 The Cantilever with an End Load 9.1.1 Rigid-body displacements and end conditions 9.1.2 Deflection of the free end 9.2 The Circular Hole 9.3 Displacements for the Michell Solution 9.3.1 Equilibrium considerations 9.3.2 The cylindrical pressure vessel Problems 10 Curved Beam Problems 10.1 Loading at the Ends 10.1.1 Pure bending 10.1.2 Force transmission 10.2 Eigenvalues and Eigenfunctions 10.3 The Inhomogeneous Problem 10.3.1 Beam with sinusoidal loading 10.3.2 The near-singular problem 10.4 Some General Considerations 10.4.1 Conclusions Problems 11 Wedge Problems 11.1 Power-law Tractions 11.1.1 Uniform tractions 11.1.2 The rectangular body revisited 11.1.3 More general uniform loading 11.1.4 Eigenvalues for the wedge angle 11.2 Williams' Asymptotic Method 11.2.1 Acceptable singularities 11.2.2 Eigenfunction expansion 11.2.3 Nature of the eigenvalues 11.2.4 The singular stress fields 11.2.5 Other geometries 11.3 General Loading of the Faces Problems 12 Plane Contact Problems 12.1 Self-Similarity 12.2 The Flamant Solution 12.3 The Half-Plane 12.3.1 The normal force Fy 12.3.2 The tangential force Fx 12.3.3 Summary 12.4 Distributed Normal Tractions 12.5 Frictionless Contact Problems 12.5.1 Method of solution 12.5.2 The flat punch 12.5.3 The cylindrical punch (Hertz problem) 12.6 Problems with Two Deformable Bodies 12.7 Uncoupled Problems 12.7.1 Contact of cylinders 12.8 Combined Normal and Tangential Loading 12.8.1 Cattaneo and Mindlin's problem 12.8.2 Steady rolling: Carter's solution Problems 13 Forces, Dislocations and Cracks 13.1 The Kelvin Solution 13.1.1 Body force problems 13.2 Dislocations 13.2.1 Dislocations in Materials Science 13.2.2 Similarities and differences 13.2.3 Dislocations as Green's functions 13.2.4 Stress concentrations 13.3 Crack Problems 13.3.1 Linear Elastic Fracture Mechanics 13.3.2 Plane crack in a tensile field 13.3.3 Energy release rate 13.4 Disclinations 13.4.1 Disclinations in a crystal structure 13.5 Method of Images Problems 14 Thermoelasticity 14.1 The Governing Equation 14.2 Heat Conduction 14.3 Steady-state Problems 14.3.1 Dundurs' Theorem Problems 15 Antiplane Shear 15.1 Transformation of Coördinates 15.2 Boundary Conditions 15.3 The Rectangular Bar 15.4 The Concentrated Line Force 15.5 The Screw Dislocation Problems 16 Moderately Thick Plates 16.1 Boundary Conditions 16.2 Edge Effects 16.3 Body Force Problems 16.4 Normal Loading of the Faces 16.4.1 Steady-state thermoelasticity Problems Part III End Loading of the Prismatic Bar 17 Torsion of a Prismatic Bar 17.1 Prandtl's Stress Function 17.1.1 Solution of the governing equation 17.1.2 The warping function 17.2 The Membrane Analogy 17.3 Thin-walled Open Sections 17.4 The Rectangular Bar 17.5 Multiply-connected (Closed) Sections 17.5.1 Thin-walled closed sections Problems 18 Shear of a Prismatic Bar 18.1 The Semi-inverse Method 18.2 Stress Function Formulation 18.3 The Boundary Condition 18.3.1 Integrability 18.3.2 Relation to the torsion problem 18.4 Methods of Solution 18.4.1 The circular bar 18.4.2 The rectangular bar Problems Part IV Complex-Variable Formulation 19 Prelinary Mathematical Results 19.1 Holomorphic Functions 19.2 Harmonic Functions 19.3 Biharmonic Functions 19.4 Expressing Real Harmonic and Biharmonic Functions in Complex Form 19.4.1 Biharmonic functions 19.5 Line Integrals 19.5.1 The residue theorem 19.5.2 The Cauchy integral theorem 19.6 Solution of Harmonic Boundary-value Problems 19.6.1 Direct method for the interior problem for a circle 19.6.2 Direct method for the exterior problem for a circle 19.6.3 The half-plane 19.7 Conformal Mapping Problems 20 Application to Elasticity Problems 20.1 Representation of Vectors 20.1.1 Transformation of coördinates 20.2 The Antiplane Problem 20.2.1 Solution of antiplane boundary-value problems 20.3 In-plane Deformations 20.3.1 Expressions for stresses 20.3.2 Rigid-body displacement 20.4 Relation between the Airy Stress Function and the Complex Potentials 20.5 Boundary Tractions 20.5.1 Equilibrium considerations 20.6 Boundary-value Problems 20.6.1 Solution of the interior problem for the circle 20.6.2 Solution of the exterior problem for the circle 20.7 Conformal Mapping for In-plane Problems 20.7.1 The elliptical hole Problems Part V Three-Dimensional Problems 21 Displacement Function Solutions 21.1 The Strain Potential 21.2 The Galerkin Vector 21.3 The Papkovich-Neuber Solution 21.3.1 Change of coördinate system 21.4 Completeness and Uniqueness 21.4.1 Methods of partial integration 21.5 Body Forces 21.5.1 Conservative body force fields 21.5.2 Non-conservative body force fields Problems 22 The Boussinesq Potentials 22.1 Solution A: The Strain Potential 22.2 Solution B 22.3 Solution E: Rotational Deformation 22.4 Other Coördinate Systems 22.4.1 Cylindrical polar coördinates 22.4.2 Spherical polar coördinates 22.5 Solutions Obtained by Superposition 22.5.1 Solution F: Frictionless isothermal contact problems 22.5.2 Solution G: The surface free of normal traction 22.5.3 A plane strain solution 22.6 A Three-dimensional Complex-Variable Solution Problems 23 Thermoelastic Displacement Potentials 23.1 The Method of Strain Suppression 23.2 Boundary-value Problems 23.2.1 Spherically-symmetric Stresses 23.2.2 More general geometries 23.3 Plane Problems 23.3.1 Axisymmetric problems for the cylinder 23.3.2 Steady-state plane problems 23.3.3 Heat flow perturbed by a circular hole 23.3.4 Plane stress 23.4 Steady-state Temperature: Solution T 23.4.1 Thermoelastic plane stress Problems 24 Singular Solutions 24.1 The Source Solution 24.1.1 The centre of dilatation 24.1.2 The Kelvin solution 24.2 Dimensional Considerations 24.2.1 The Boussinesq solution 24.3 Other Singular Solutions 24.4 Image Methods 24.4.1 The traction-free half-space Problems 25 Spherical Harmonics 25.1 Fourier Series Solution 25.2 Reduction to Legendre's Equation 25.3 Axisymmetric Potentials and Legendre Polynomials 25.3.1 Singular spherical harmonics 25.3.2 Special cases 25.4 Non-axisymmetric Harmonics 25.5 Cartesian and Cylindrical Polar Coördinates 25.6 Harmonic Potentials with Logarithmic Terms 25.6.1 Logarithmic functions for cylinder problems 25.7 Non-axisymmetric Cylindrical Potentials 25.8 Spherical Harmonics in Complex-variable Notation 25.8.1 Bounded cylindrical harmonics 25.8.2 Singular cylindrical harmonics Problems 26 Cylinders and Circular Plates 26.1 Axisymmetric Problems for Cylinders 26.1.1 The solid cylinder 26.1.2 The hollow cylinder 26.2 Axisymmetric Circular Plates 26.2.1 Uniformly loaded plate on a simple support 26.3 Non-axisymmetric Problems 26.3.1 Cylindrical cantilever with an end load Problems 27 Problems in Spherical Coördinates 27.1 Solid and Hollow Spheres 27.1.1 The solid sphere in torsion 27.1.2 Spherical hole in a tensile field 27.2 Conical Bars 27.2.1 Conical bar transmitting an axial force 27.2.2 Inhomogeneous problems 27.2.3 Non-axisymmetric problems Problems 28 Eigenstrains and Inclusions 28.1 Governing Equations 28.2 Galerkin Vector Formulation 28.2.1 Non-differentiable eigenstrains 28.2.2 The stress field 28.3 Uniform Eigenstrains in a Spherical Inclusion 28.3.1 Stresses outside the inclusion 28.4 Green's Function Solutions 28.4.1 Nuclei of strain 28.5 The Ellipsoidal Inclusion 28.5.1 The stress field 28.5.2 Anisotropic material 28.6 The Ellipsoidal Inhomogeneity 28.6.1 Equal Poisson's ratios 28.6.2 The ellipsoidal hole 28.7 Energetic Considerations 28.7.1 Evaluating the integral 28.7.2 Strain energy in the inclusion Problems 29 Axisymmetric Torsion 29.1 The Transmitted Torque 29.2 The Governing Equation 29.3 Solution of the Governing Equation 29.4 The Displacement Field 29.5 Cylindrical and Conical Bars 29.5.1 The centre of rotation 29.6 The Saint Venant Problem Problems 30 The Prismatic Bar 30.1 Power-series Solutions 30.1.1 Superposition by differentiation 30.1.2 The problems mathcalP0 and mathcalP1 30.1.3 Properties of the solution to mathcalPm 30.2 Solution of mathcalPm by Integration 30.3 The Integration Process 30.4 The Two-dimensional Problem mathcalP0 30.5 Problem mathcalP1 30.5.1 The corrective antiplane solution 30.5.2 The circular bar 30.6 The Corrective In-plane Solution 30.7 Corrective Solutions using Real Stress Functions 30.7.1 Airy function 30.7.2 Prandtl function 30.8 Solution Procedure 30.9 Example 30.9.1 Problem mathcalP1 30.9.2 Problem mathcalP2 30.9.3 End conditions Problems 31 Frictionless Contact 31.1 Boundary Conditions 31.1.1 Mixed boundary-value problems 31.2 Determining the Contact Area 31.3 Contact Problems Involving Adhesive Forces Problems 32 The Boundary-value Problem 32.1 Hankel Transform Methods 32.2 Collins' Method 32.2.1 Indentation by a flat punch 32.2.2 Integral representation 32.2.3 Basic forms and surface values 32.2.4 Reduction to an Abel equation 32.2.5 Smooth contact problems 32.2.6 Choice of form 32.3 Non-axisymmetric Problems 32.3.1 The full stress field Problems 33 The Penny-shaped Crack 33.1 The Penny-shaped Crack in Tension 33.2 Thermoelastic Problems Problems 34 Hertzian Contact 34.1 Elastic Deformation 34.1.1 Field-point integration 34.2 Solution Procedure 34.2.1 Axisymmetric bodies Problems 35 The Interface Crack 35.1 The Uncracked Interface 35.2 The Corrective Solution 35.2.1 Global conditions 35.2.2 Mixed conditions 35.3 The Penny-shaped Crack in Tension 35.3.1 Reduction to a single equation 35.3.2 Oscillatory singularities 35.4 The Contact Solution 35.5 Implications for Fracture Mechanics Problems 36 Anisotropic Elasticity 36.1 The Constitutive Law 36.2 Two-dimensional Solutions 36.3 Orthotropic Material 36.3.1 Normal loading of the half-plane 36.3.2 Degenerate cases 36.4 Lekhnitskii's Formalism 36.4.1 Polynomial solutions 36.4.2 Solutions in linearly transformed space 36.5 Stroh's Formalism 36.5.1 The eigenvalue problem 36.5.2 Solution of boundary-value problems 36.5.3 The line force solution 36.5.4 Internal forces and dislocations 36.5.5 Planar crack problems 36.5.6 The Barnett-Lothe tensors 36.6 End Loading of the Prismatic Bar 36.6.1 Bending and axial force 36.6.2 Torsion 36.7 Three-dimensional Problems 36.7.1 Concentrated force on a half-space 36.8 Transverse Isotropy Problems 37 Variational Methods 37.1 Strain Energy 37.1.1 Strain energy density 37.2 Conservation of Energy 37.3 Potential Energy of the External Forces 37.4 Theorem of Minimum Total Potential Energy 37.5 Approximate Solutions — the Rayleigh-Ritz Method 37.6 Castigliano's Second Theorem 37.7 Approximations using Castigliano's Second Theorem 37.7.1 The torsion problem 37.7.2 The in-plane problem 37.8 Uniqueness and Existence of Solution 37.8.1 Singularities Problems 38 The Reciprocal Theorem 38.1 Maxwell's Theorem 38.1.1 Example: Mindlin's problem 38.2 Betti's Theorem 38.2.1 Change of volume 38.2.2 A tilted punch problem 38.2.3 Indentation of a half-space 38.3 Eigenstrain Problems 38.3.1 Deformation of a traction-free body 38.3.2 Displacement constraints 38.4 Thermoelastic Problems Problems Appendix A Using Maple and Mathematica Index