دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2nd ed. 2020
نویسندگان: Jan Awrejcewicz. Vadim A. Krysko
سری: Scientific Computation
ISBN (شابک) : 3030376621, 9783030376628
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 615
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 30 مگابایت
در صورت تبدیل فایل کتاب Elastic and Thermoelastic Problems in Nonlinear Dynamics of Structural Members: Applications of the Bubnov-Galerkin and Finite Difference Methods به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مسائل الاستیک و ترموالاستیک در دینامیک غیرخطی اعضای سازه: کاربرد روشهای Bubnov-Galerkin و تفاضل محدود نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
از بررسی ها: \\\"ویژگی منحصر به فرد این کتاب، ترکیب زیبای شفافیت مهندسی و دقت ریاضی است. [...] باید به نویسندگان به دلیل کمک ارزشمندشان به ادبیات در زمینه ترموالاستیسیته نظری و ارتعاشات تبریک گفت. صفحات. \\\" مجله صدا و ارتعاش
From the reviews: \"A unique feature of this book is the nice blend of engineering vividness and mathematical rigour. [...] The authors are to be congratulated for their valuable contribution to the literature in the area of theoretical thermoelasticity and vibration of plates.\" Journal of Sound and Vibration
Preface Contents 1 Introduction 2 Coupled Thermoelasticity and Transonic Gas Flow 2.1 Coupled Linear Thermoelasticity of Shallow Shells 2.1.1 Fundamental Assumptions 2.1.2 Differential Equations 2.1.3 Boundary and Initial Conditions 2.1.4 An Abstract Coupled Problem 2.1.5 Existence and Uniqueness of Solutions of Thermoelasticity Problems 2.2 Cylindrical Panel Within Transonic Gas Flow 2.2.1 Statement and Solution of the Problem 2.2.1.1 Equations of Motion and Boundary Conditions of a Panel 2.2.1.2 Equations of Transonic Ideal-Gas Motion 2.2.1.3 Equations and Boundary Conditions of Panel–Flow Interaction 2.2.1.4 Analysis of Panel Oscillations 2.2.1.5 Method of Solution of the Problem 2.2.1.6 Interaction Between a Flow and a Panel 2.2.2 Stable Vibrating Panel Within a Transonic Flow 2.2.2.1 Shock Wave Motion 2.2.2.2 Interaction of a Flow and a Panel 2.2.3 Stability Loss of Panel Within Transonic Flow 2.2.3.1 Stability Criteria 2.2.3.2 Analysis of Stress–Strain State 3 Estimation of the Errors of the Bubnov–Galerkin Method 3.1 An Abstract Coupled Problem 3.2 Coupled Thermoelastic Problem Within the Kirchhoff–Love Model 3.3 Case of a Simply Supported Plate Within the Kirchhoff Model 3.4 Coupled Problem of Thermoelasticity Within a Timoshenko-Type Model 4 Numerical Investigations of the Errors of the Bubnov–Galerkin Method 4.1 Vibration of a Transversely Loaded Plate 4.2 Vibration of a Plate with an Imperfection in the Form of a Deflection 4.3 Vibration of a Plate with a Given Variable Deflection Change 5 Coupled Nonlinear Thermoelastic Problems 5.1 Fundamental Relations and Assumptions 5.2 Differential Equations 5.3 Boundary and Initial Conditions 5.4 On the Existence and Uniqueness of a Solution and on the Convergence of the Bubnov–Galerkin Method 6 Theory with Physical Nonlinearities and Coupling 6.1 Fundamental Assumptions and Relations 6.2 Variational Equations of Physically Nonlinear Coupled Problems 6.3 Equations in Terms of Displacements 7 Nonlinear Problems of Hybrid-Form Equations 7.1 Method of Solution for Nonlinear Coupled Problems 7.2 Relaxation Method 7.3 Numerical Investigations and Reliability of the Results Obtained 7.4 Vibration of Isolated Shell Subjected to Impulse 7.5 Dynamic Stability of Shells Under Thermal Shock 7.6 Influence of Coupling and Rotational Inertia on Stability 7.7 Numerical Tests 7.8 Influence of Damping and Excitation Amplitude A 7.9 Spatial–Temporal Symmetric Chaos 7.10 Dissipative Nonsymmetric Oscillations 7.11 Solitary Waves 8 Dynamics of Thin Elasto-Plastic Shells 8.1 Fundamental Relations 8.2 Method of Solution 8.3 Oscillations and Stability of Elasto-Plastic Shells 9 Mathematical Model of Cylindrical/Spherical Shell Vibrations 9.1 Fundamental Relations and Assumptions 9.2 The Bubnov-Galerkin Method 9.2.1 Closed Cylindrical Shell 9.2.2 Cylindrical Panel 9.3 Reliability of the Obtained Results 9.4 On the Set Up Method in Theory of Flexible Shallow Shells 9.5 Dynamic Stability Loss of the Shells Under the Step-Type Function of Infinite Length 10 Scenarios of Transition from Periodic to Chaotic Shell Vibrations 10.1 Novel Models of Scenarios of Transition from Periodic to Chaotic Orbits 10.2 Sharkovsky's Periodicity Exhibited by PDEs Governing Dynamics of Flexible Shells 10.3 On the Space-Temporal Chaos 11 Mathematical Models of Chaotic Vibrations of Closed Cylindrical Shells with Circle Cross Section 11.1 On the Convergence of the Bubnov-Galerkin (BG) Method in the Vase of Chaotic Vibrations of Closed Cylindrical Shells 11.2 Chaotic Vibrations of Closed Cylindrical Shells Versus Their Geometric Parameters and Area of the External Load Action 12 Chaotic Dynamics of Flexible Closed Cylindrical Nano-Shells Under Local Load 12.1 Statement of the Problem 12.2 Algorithm of the Bubnov–Galerkin Method 12.3 Numerical Experiment 13 Contact Interaction of Two Rectangular Plates Made from Different Materials with an Account of Physical Non-Linearity 13.1 Statement of the Problem 13.2 Reduction of PDEs to ODEs 13.2.1 The Method of Kantorovich-Vlasov (MKV) 13.2.2 Method of Vaindiner (MV) 13.2.3 Method of Variational Iteration (MVI) 13.2.4 Method of Arganovskiy-Baglay-Smirnov (MABS) 13.2.5 Combined Method (MC) 13.2.6 Matching of the Methods of Kantorovich-Vlasov and Arganovskiy-Baglay-Smirnov (MKV+MABS) 13.2.7 Matching of the Methods of Vaindiner and the Arganovskiy-Baglay-Smirnov (MV+MABS) 13.2.8 Matching of the Methods of Vaindiner with the Method of Variational Iterations (MV+MVI) 13.2.9 Numerical Example 13.3 Mathematical Background 13.3.1 Theorems on Convergence of MVI 13.3.2 Convergence Theorem 13.4 Contact Interaction of Two Square Plates 13.4.1 Computational Examples 13.5 Dynamics of a Contact Interaction 14 Chaotic Vibrations of Flexible Shallow Axially Symmetric Shells vs. Different Boundary Conditions 14.1 Problem Statement and the Method of Solution 14.2 Quantification of True Chaotic Vibrations 14.3 Modes of Vibrations (Simple Support) 14.4 Modes of Vibrations (Rigid Clamping) 14.5 Investigation of Occurrence of Ribs (Simple Nonmovable Shell Support) 14.6 Shell Vibration Modes (Movable Clamping) 15 Chaotic Vibrations of Two Euler-Bernoulli Beams With a Small Clearance 15.1 Mathematical Model 15.2 Principal Component Analysis (PCA) 15.3 Numerical Experiment 15.4 Application of the Principal Component Analysis 16 Unsolved Problems in Nonlinear Dynamics of Thin Structural Members References