دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Zelditch S.
سری:
ناشر: AMS
سال نشر: 2017
تعداد صفحات: 412
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 مگابایت
کلمات کلیدی مربوط به کتاب توابع ویژه لاپلاسین منیفولدهای ریمانی: ریاضیات، حساب دیفرانسیل و انتگرال، معادلات دیفرانسیل
در صورت تبدیل فایل کتاب Eigenfunctions of the Laplacian of Riemannian manifolds به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب توابع ویژه لاپلاسین منیفولدهای ریمانی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface 0.1. Organization 0.2. Topics which are not covered 0.3. Topics which are double covered 0.4. Notation Acknowledgments Chapter 1. Introduction 1.1. What are eigenfunctions and why are they useful 1.2. Notation for eigenvalues 1.3. Weyl\'s law for Laplacian-eigenvalues 1.4. Quantum Mechanics 1.5. Dynamics of the geodesic or billiard flow 1.6. Intensity plots and excursion sets 1.7. Nodal sets and critical point sets 1.8. Local versus global analysis of eigenfunctions 1.9. High frequency limits, oscillation and concentration 1.10. Spectral projections 1.11. Lp norms 1.12. Matrix elements and Wigner distributions 1.13. Egorov\'s theorem 1.14. Eherenfest time 1.15. Weak* limit problem 1.16. Ergodic versus completely integrable geodesic flow 1.17. Ergodic eigenfunctions 1.18. Quantum unique ergodicity (QUE) 1.19. Completely integrable eigenfunctions 1.20. Heisenberg uncertainty principle 1.21. Sequences of eigenfunctions and length scales 1.22. Localization of eigenfunctions on closed geodesics 1.23. Some remarks on the contents and on other texts 1.24. References Bibliography Chapter 2. Geometric preliminaries 2.1. Symplectic linear algebra and geometry 2.2. Symplectic manifolds and cotangent bundles 2.3. Lagrangian submanifolds 2.4. Jacobi fields and Poincaré map 2.5. Pseudo-differential operators 2.6. Symbols 2.7. Quantization of symbols 2.8. Action of a pseudo-differential operator on a rapidly oscillating exponential Bibliography Chapter 3. Main results 3.1. Universal Lp bounds 3.2. Self-focal points and extremal Lp bounds for high p 3.3. Low Lp norms and concentration of eigenfunctions around geodesics 3.4. Kakeya-Nikodym maximal function and extremal Lp bounds for small p 3.5. Concentration of joint eigenfunctions of quantum integrable Laplacian around closed geodesics 3.6. Quantum ergodic restriction theorems for Cauchy data 3.7. Quantum ergodic restriction theorems for Dirichlet data 3.8. Counting nodal domains and nodal intersections with curves 3.9. Intersections of nodal lines and general curves on negatively curved surfaces 3.10. Complex zeros of eigenfunctions Bibliography Chapter 4. Model spaces of constant curvature 4.1. Euclidean space 4.2. Euclidean wave kernels 4.3. Flat torus Tn 4.4. Spheres Sn 4.5. Hyperbolic space and non-Euclidean plane waves 4.6. Dynamics and group theory of G=PSL(2,R) 4.7. The Hyperbolic Laplacian 4.8. Wave kernel and Poisson kernel on Hyperbolic space Hn 4.9. Poisson kernel 4.10. Spherical functions on H2 4.11. The non-Euclidean Fourier transform 4.12. Hyperbolic cylinders 4.13. Irreducible representations of G 4.14. Compact hyperbolic quotients X=Gamma minus H2 4.15. Representation theory of G and spectral theory of Laplacian on compact quotients 4.16. Appendix on the Fourier transform Bibliography Chapter 5. Local structure of eigenfunctions 5.1. Local versus global eigenfunctions 5.2. Small balls and local dilation 5.3. Local elliptic estimates of eigenfunctions 5.4. lambda-Poisson operators 5.5. Bernstein estimates 5.6. Frequency function and doubling index 5.7. Carleman estimates 5.8. Norm square of the Cauchy data 5.9. Hyperbolic aspects Bibliography Chapter 6. Hadamard parametrices on Riemannian manifolds 6.1. Hadamard parametrix 6.2. Hadamard-Riesz parametrix 6.3. The Hadamard-Feynman fundamental solution and Hadamard\'s parametrix 6.4. Sketch of proof of Hadamard\'s construction 6.5. Convergence in the real analytic case 6.6. Away from CR 6.7. Hadamard parametrix on a manifold without conjugate points 6.8. Dimension 3 6.9. Appendix on Homogeneous distributions Bibliography Chapter 7. Lagrangian distributions and Fourier integral operators 7.1. Introduction 7.2. Homogeneous Fourier integral operators 7.3. Semi-classical Fourier integral operators 7.4. Principal symbol, testing and matrix elements 7.5. Composition of half-densities on canonical relations in cotangent bundles Bibliography Chapter 8. Small time wave group and Weyl asymptotics 8.1. Hörmander parametrix 8.2. Wave group and spectral projections 8.3. Small-time asymptotics for microlocal wave operators 8.4. Weyl law and local Weyl law 8.5. Fourier Tauberian approach 8.6. Tauberian Lemmas Bibliography Chapter 9. Matrix elements 9.1. Invariance properties 9.2. Proof of Egorov\'s theorem 9.3. Weak* limit problem 9.4. Matrix elements of spherical harmonics 9.5. Quantum ergodicity and mixing of eigenfunctions 9.6. Hassell\'s scarring result for stadia 9.7. Appendix on Duhamel\'s formula Bibliography Chapter 10. Lp norms 10.1. Discrete Restriction theorems 10.2. Random spherical harmonics and extremal spherical harmonics 10.3. Sketch of proof of the Sogge Lp estimates 10.4. Maximal eigenfunction growth 10.5. Geometry of loops and return maps. 10.6. Proof of Theorem 10.21. Step 1: Safarov\'s pre-trace formula 10.7. Proof of Theorem 10.29. Step 2: Estimates of remainders at L-points 10.8. Completion of the proof of Proposition 10.30 and Theorem 10.29: study of tilde Rj1 10.9. Infinitely many twisted self-focal points 10.10. Dynamics of the first return map at a self-focal point 10.11. Proof of Proposition 10.20 10.12. Uniformly bounded orthonormal basis 10.13. Appendix: Integrated Weyl laws in the real domain Bibliography Chapter 11. Quantum Integrable systems 11.1. Classical integrable systems 11.2. Normal forms of integrable Hamiltonians near non-degenerate singular orbits 11.3. Joint eigenfunctions 11.4. Quantum toral integrable systems 11.5. Lagrangian torus fibration and classical moment map 11.6. Lp norms of Quantum integrable eigenfunctions 11.7. Sketch of proof of Theorem 11.8 11.8. Mass concentration of special eigenfunctions on hyperbolic orbits in the quantum integrable case 11.9. Details on Mh 11.10. Concentration of quantum integrable eigenfunctions on submanifolds Bibliography Chapter 12. Restriction theorems 12.1. Null restrictions, degenerate restrictions and `goodness\' 12.2. L2 upper bounds on Dirichlet or Neumann data of eigenfunctions 12.3. Cauchy data of Dirichlet eigenfunctions for manifolds with boundary 12.4. Restriction bounds for Neumann eigenfunctions 12.5. Periods and Fourier coefficients of eigenfunctions on a closed geodesic 12.6. Kuznecov sum formula: Proofs of Theorems 12.8 and 12.10 12.7. Restricted Weyl laws 12.8. Relating matrix elements of restrictions to global matrix elements 12.9. Geodesic geometry of hypersurfaces 12.10. Tangential cutoffs 12.11. Canonical relation of gammaH 12.12. The canonical relation of 12.13. The canonical relation 12.14. The pullback 12.15. The pushforward 12.16. The symbol of 12.17. Proof of the restricted local Weyl law: Proposition 12.14 12.18. Asymptotic completeness and orthogonality of Cauchy data 12.19. Expansions in Cauchy data of eigenfunctions 12.20. Bochner-Riesz means for Cauchy data 12.21. Quantum ergodic restriction theorems 12.22. Rellich approach to QER: Proof of Theorem 12.33 12.23. Proof of Theorem 12.36 and Corollary 12.37 12.24. Quantum ergodic restriction (QER) theorems for Dirichlet data 12.25. Time averaging 12.26. Completion of the proofs of Theorems 12.39 and 12.40 Bibliography Chapter 13. Nodal sets: Real domain 13.1. Fundamental existence theorem for nodal sets 13.2. Curvature of nodal lines and level lines 13.3. Sub-level sets of eigenfunctions 13.4. Nodal sets of real homogeneous polynomials 13.5. Rectifiability of the nodal set 13.6. Doubling estimates 13.7. Lower bounds for for Cinfty metrics 13.8. Counting nodal domains Bibliography Chapter 14. Eigenfunctions in the complex domain 14.1. Grauert tubes and complex geodesic flow 14.2. Analytic continuation of the exponential map 14.3. Maximal Grauert tubes 14.4. Model examples 14.5. Analytic continuation of eigenfunctions 14.6. Maximal holomorphic extension 14.7. Husimi functions 14.8. Poisson wave operator and Szego projector on Grauert tubes 14.9. Poisson operator and analytic Continuation of eigenfunctions 14.10. Analytic continuation of the Poisson wave group 14.11. Complexified spectral projections 14.12. Poisson operator as a complex Fourier integral operator 14.13. Complexified Poisson kernel as a complex Fourier integral operator 14.14. Analytic continuation of the Poisson wave kernel 14.15. Hörmander parametrix for the Poisson wave kernel 14.16. Subordination to the heat kernel 14.17. Fourier integral distributions with complex phase 14.18. Analytic continuation of the Hadamard parametrix 14.19. Analytic continuation of the Hörmander parametrix 14.20. Delta g box g and characteristics 14.21. Characteristic variety and characteristic conoid 14.22. Hadamard parametrix for the Poisson wave kernel 14.23. Hadamard parametrix as an oscillatory integral with complex phase 14.24. Tempered spectral projector and Poisson semi-group as complex Fourier integral operators 14.25. Complexified wave group and Szego kernels 14.26. Growth of complexified eigenfunctions 14.27. Siciak extremal functions: Proof of Theorem 14.14 (1) 14.28. Pointwise phase space Weyl laws on Grauert tubes 14.29. Proof of Corollary 14.16 14.30. Complex nodal sets and sequences of logarithms 14.31. Real zeros and complex analysis 14.32. Background on hypersurfaces and geodesics 14.33. Proof of the Donnelly-Fefferman lower bound (A. Brudnyi) 14.34. Properties of eigenfunctions in good balls 14.35. Background on good-ness 14.36. A. Brudnyi\'s proof of Proposition 14.38 14.37. Equidistribution of complex nodal sets of real ergodic eigenfunctions 14.38. Sketch of the proof 14.39. Growth properties of complexified eigenfunctions 14.40. Proof of Lemma 14.48 14.41. Proof of Lemma 14.47 14.42. Intersections of nodal sets and analytic curves on real analytic surfaces 14.43. Counting nodal lines which touch the boundary in analytic plane domains 14.44. Application to Pleijel\'s conjecture 14.45. Equidistribution of intersections of nodal lines and geodesics on surfaces Bibliography Index