ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب EEG Signal Processing and Machine Learning

دانلود کتاب پردازش سیگنال EEG و یادگیری ماشینی

EEG Signal Processing and Machine Learning

مشخصات کتاب

EEG Signal Processing and Machine Learning

ویرایش: 2 
نویسندگان:   
سری:  
ISBN (شابک) : 1119386942, 9781119386940 
ناشر: Wiley 
سال نشر: 2021 
تعداد صفحات: 0 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 75 مگابایت 

قیمت کتاب (تومان) : 58,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب EEG Signal Processing and Machine Learning به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پردازش سیگنال EEG و یادگیری ماشینی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پردازش سیگنال EEG و یادگیری ماشینی



تکنیک های پیشرفته را در خط مقدم تحقیقات الکتروانسفالوگرام و هوش مصنوعی از صداهای پیشرو در این زمینه کاوش کنید

نسخه دوم تجدید نظر شده جدید پردازش سیگنال EEG و یادگیری ماشینی ارائه می کند کاوش جامع و کامل تکنیک‌ها و نتایج جدید در تحقیقات الکتروانسفالوگرام (EEG) در زمینه‌های تجزیه و تحلیل، پردازش و تصمیم‌گیری در مورد انواع حالات مغزی، ناهنجاری‌ها و اختلالات با استفاده از تکنیک‌های پردازش سیگنال پیشرفته و یادگیری ماشین. محتوای کتاب به میزان قابل توجهی نسبت به نسخه اول افزایش یافته است و در حالی که آنچه که چاپ اول را بسیار محبوب کرده است حفظ می کند، از بیش از 50٪ مطالب جدید تشکیل شده است.

نویسندگان برجسته مطالب جدیدی را در مورد تانسورها برای تجزیه و تحلیل EEG و همجوشی حسگرها و همچنین فصل‌های جدیدی در مورد خستگی ذهنی، خواب، تشنج، بیماری‌های عصبی رشدی، BCI و ناهنجاری‌های روانی گنجانده‌اند. علاوه بر گنجاندن یک فصل جامع در مورد یادگیری ماشین، برنامه های کاربردی یادگیری ماشین تقریباً به تمام فصل ها اضافه شده است. علاوه بر این، غربالگری چندوجهی مغز، مانند EEG-fMRI، و اتصال مغز به عنوان دو فصل جدید در این نسخه جدید گنجانده شده است.

خوانندگان همچنین از گنجاندن موارد زیر بهره خواهند برد:

  • معرفی کامل بر EEG ها، از جمله فعالیت های عصبی، پتانسیل های عمل، تولید EEG، ریتم های مغزی، و ثبت و اندازه گیری EEG
  • کاوش در امواج مغزی، از جمله تولید، ضبط، و ابزار دقیق، از جمله الگوهای غیر طبیعی EEG و اثرات پیری و اختلالات روانی
  • درمان مدل های ریاضی برای EEG های طبیعی و غیر طبیعی
  • مباحث اصول پردازش سیگنال EEG، از جمله آماری ویژگی ها، سیستم های خطی و غیرخطی، رویکردهای حوزه فرکانس، فاکتورسازی تانسور، فیلتر تطبیقی ​​انتشار، شبکه های عصبی عمیق، و پردازش سیگنال با ارزش پیچیده

    مناسب برای مهندسان زیست پزشکی، عصب شناسان، فیزیولوژیست های اعصاب، روانپزشکان، مهندسان و دانشجویان و محققان در در بالا، ویرایش دوم پردازش سیگنال EEG و یادگیری ماشین نیز جایگاهی در کتابخانه های مهندسی پزشکی و علوم اعصاب در مقطع کارشناسی و کارشناسی ارشد، از جمله صرع، دانشجویان، کسب خواهد کرد.


  • توضیحاتی درمورد کتاب به خارجی

    Explore cutting edge techniques at the forefront of electroencephalogram research and artificial intelligence from leading voices in the field

    The newly revised Second Edition of EEG Signal Processing and Machine Learning delivers an inclusive and thorough exploration of new techniques and outcomes in electroencephalogram (EEG) research in the areas of analysis, processing, and decision making about a variety of brain states, abnormalities, and disorders using advanced signal processing and machine learning techniques. The book content is substantially increased upon that of the first edition and, while it retains what made the first edition so popular, is composed of more than 50% new material.

    The distinguished authors have included new material on tensors for EEG analysis and sensor fusion, as well as new chapters on mental fatigue, sleep, seizure, neurodevelopmental diseases, BCI, and psychiatric abnormalities. In addition to including a comprehensive chapter on machine learning, machine learning applications have been added to almost all the chapters. Moreover, multimodal brain screening, such as EEG-fMRI, and brain connectivity have been included as two new chapters in this new edition.

    Readers will also benefit from the inclusion of:

  • A thorough introduction to EEGs, including neural activities, action potentials, EEG generation, brain rhythms, and EEG recording and measurement
  • An exploration of brain waves, including their generation, recording, and instrumentation, including abnormal EEG patterns and the effects of ageing and mental disorders
  • A treatment of mathematical models for normal and abnormal EEGs
  • Discussions of the fundamentals of EEG signal processing, including statistical properties, linear and nonlinear systems, frequency domain approaches, tensor factorization, diffusion adaptive filtering, deep neural networks, and complex-valued signal processing

    Perfect for biomedical engineers, neuroscientists, neurophysiologists, psychiatrists, engineers, and students and researchers in the above areas, the Second Edition of EEG Signal Processing and Machine Learning will also earn a place in the libraries of undergraduate and postgraduate Biomedical Engineering and Neuroscience, including Epileptology, students.



  • فهرست مطالب

    Cover
    Title Page
    Copyright Page
    Contents
    Preface to the Second Edition
    Preface to the First Edition
    List of Abbreviations
    Chapter 1 Introduction to Electroencephalography
    	1.1 Introduction
    	1.2 History
    	1.3 Neural Activities
    	1.4 Action Potentials
    	1.5 EEG Generation
    	1.6 The Brain as a Network
    	1.7 Summary
    	References
    Chapter 2 EEG Waveforms
    	2.1 Brain Rhythms
    	2.2 EEG Recording and Measurement
    		2.2.1 Conventional Electrode Positioning
    		2.2.2 Unconventional and Special Purpose EEG Recording Systems
    		2.2.3 Invasive Recording of Brain Potentials
    		2.2.4 Conditioning the Signals
    	2.3 Sleep
    	2.4 Mental Fatigue
    	2.5 Emotions
    	2.6 Neurodevelopmental Disorders
    	2.7 Abnormal EEG Patterns
    	2.8 Ageing
    	2.9 Mental Disorders
    		2.9.1 Dementia
    		2.9.2 Epileptic Seizure and Nonepileptic Attacks
    		2.9.3 Psychiatric Disorders
    		2.9.4 External Effects
    	2.10 Summary
    	References
    Chapter 3 EEG Signal Modelling
    	3.1 Introduction
    	3.2 Physiological Modelling of EEG Generation
    		3.2.1 Integrate-and-Fire Models
    		3.2.2 Phase-Coupled Models
    		3.2.3 Hodgkin–Huxley Model
    		3.2.4 Morris–Lecar Model
    	3.3 Generating EEG Signals Based on Modelling the Neuronal Activities
    	3.4 Mathematical Models Derived Directly from the EEG Signals
    		3.4.1 Linear Models
    			3.4.1.1 Prediction Method
    			3.4.1.2 Prony\'s Method
    		3.4.2 Nonlinear Modelling
    		3.4.3 Gaussian Mixture Model
    	3.5 Electronic Models
    		3.5.1 Models Describing the Function of the Membrane
    			3.5.1.1 Lewis Membrane Model
    			3.5.1.2 Roy Membrane Model
    		3.5.2 Models Describing the Function of a Neuron
    			3.5.2.1 Lewis Neuron Model
    			3.5.2.2 The Harmon Neuron Model
    		3.5.3 A Model Describing the Propagation of the Action Pulse in an Axon
    		3.5.4 Integrated Circuit Realizations
    	3.6 Dynamic Modelling of Neuron Action Potential Threshold
    	3.7 Summary
    	References
    Chapter 4 Fundamentals of EEG Signal Processing
    	4.1 Introduction
    	4.2 Nonlinearity of the Medium
    	4.3 Nonstationarity
    	4.4 Signal Segmentation
    	4.5 Signal Transforms and Joint Time–Frequency Analysis
    		4.5.1 Wavelet Transform
    			4.5.1.1 Continuous Wavelet Transform
    			4.5.1.2 Examples of Continuous Wavelets
    			4.5.1.3 Discrete-Time Wavelet Transform
    			4.5.1.4 Multiresolution Analysis
    			4.5.1.5 Wavelet Transform Using Fourier Transform
    			4.5.1.6 Reconstruction
    		4.5.2 Synchro-Squeezed Wavelet Transform
    		4.5.3 Ambiguity Function and the Wigner–Ville Distribution
    	4.6 Empirical Mode Decomposition
    	4.7 Coherency, Multivariate Autoregressive Modelling, and Directed Transfer Function
    	4.8 Filtering and Denoising
    	4.9 Principal Component Analysis
    		4.9.1 Singular Value Decomposition
    	4.10 Summary
    	References
    Chapter 5 EEG Signal Decomposition
    	5.1 Introduction
    	5.2 Singular Spectrum Analysis
    		5.2.1 Decomposition
    		5.2.2 Reconstruction
    	5.3 Multichannel EEG Decomposition
    		5.3.1 Independent Component Analysis
    		5.3.2 Instantaneous BSS
    		5.3.3 Convolutive BSS
    			5.3.3.1 General Applications
    			5.3.3.2 Application of Convolutive BSS to EEG
    	5.4 Sparse Component Analysis
    		5.4.1 Standard Algorithms for Sparse Source Recovery
    			5.4.1.1 Greedy-Based Solution
    			5.4.1.2 Relaxation-Based Solution
    		5.4.2 k-Sparse Mixtures
    	5.5 Nonlinear BSS
    	5.6 Constrained BSS
    	5.7 Application of Constrained BSS; Example
    	5.8 Multiway EEG Decompositions
    		5.8.1 Tensor Factorization for BSS
    		5.8.2 Solving BSS of Nonstationary Sources Using Tensor Factorization
    	5.9 Tensor Factorization for Underdetermined Source Separation
    	5.10 Tensor Factorization for Separation of Convolutive Mixtures in the Time Domain
    	5.11 Separation of Correlated Sources via Tensor Factorization
    	5.12 Common Component Analysis
    	5.13 Canonical Correlation Analysis
    	5.14 Summary
    	References
    Chapter 6 Chaos and Dynamical Analysis
    	6.1 Introduction to Chaos and Dynamical Systems
    	6.2 Entropy
    	6.3 Kolmogorov Entropy
    	6.4 Multiscale Fluctuation-Based Dispersion Entropy
    	6.5 Lyapunov Exponents
    	6.6 Plotting the Attractor Dimensions from Time Series
    	6.7 Estimation of Lyapunov Exponents from Time Series
    		6.7.1 Optimum Time Delay
    		6.7.2 Optimum Embedding Dimension
    	6.8 Approximate Entropy
    	6.9 Using Prediction Order
    	6.10 Summary
    	References
    Chapter 7 Machine Learning for EEG Analysis
    	7.1 Introduction
    	7.2 Clustering Approaches
    		7.2.1 k-Means Clustering Algorithm
    		7.2.2 Iterative Self-Organizing Data Analysis Technique
    		7.2.3 Gap Statistics
    		7.2.4 Density-Based Clustering
    		7.2.5 Affinity-Based Clustering
    		7.2.6 Deep Clustering
    		7.2.7 Semi-Supervised Clustering
    			7.2.7.1 Basic Semi-Supervised Techniques
    			7.2.7.2 Deep Semi-Supervised Techniques
    		7.2.8 Fuzzy Clustering
    	7.3 Classification Algorithms
    		7.3.1 Decision Trees
    		7.3.2 Random Forest
    		7.3.3 Linear Discriminant Analysis
    		7.3.4 Support Vector Machines
    		7.3.5 k-Nearest Neighbour
    		7.3.6 Gaussian Mixture Model
    		7.3.7 Logistic Regression
    		7.3.8 Reinforcement Learning
    		7.3.9 Artificial Neural Networks
    			7.3.9.1 Deep Neural Networks
    			7.3.9.2 Convolutional Neural Networks
    			7.3.9.3 Autoencoders
    			7.3.9.4 Variational Autoencoder
    			7.3.9.5 Recent DNN Approaches
    			7.3.9.6 Spike Neural Networks
    			7.3.9.7 Applications of DNNs to EEG
    		7.3.10 Gaussian Processes
    		7.3.11 Neural Processes
    		7.3.12 Graph Convolutional Networks
    		7.3.13 Naïve Bayes Classifier
    		7.3.14 Hidden Markov Model
    			7.3.14.1 Forward Algorithm
    			7.3.14.2 Backward Algorithm
    			7.3.14.3 HMM Design
    	7.4 Common Spatial Patterns
    	7.5 Summary
    	References
    Chapter 8 Brain Connectivity and Its Applications
    	8.1 Introduction
    	8.2 Connectivity through Coherency
    	8.3 Phase-Slope Index
    	8.4 Multivariate Directionality Estimation
    		8.4.1 Directed Transfer Function
    		8.4.2 Direct DTF
    		8.4.3 Partial Directed Coherence
    	8.5 Modelling the Connectivity by Structural Equation Modelling
    	8.6 Stockwell Time–Frequency Transform for Connectivity Estimation
    	8.7 Inter-Subject EEG Connectivity
    		8.7.1 Objectives
    		8.7.2 Technological Relevance
    	8.8 State-Space Model for Estimation of Cortical Interactions
    	8.9 Application of Cooperative Adaptive Filters
    		8.9.1 Use of Cooperative Kalman Filter
    		8.9.2 Task-Related Adaptive Connectivity
    		8.9.3 Diffusion Adaptation
    		8.9.4 Brain Connectivity for Cooperative Adaptation
    		8.9.5 Other Applications of Cooperative Learning and Brain Connectivity Estimation
    	8.10 Graph Representation of Brain Connectivity
    	8.11 Tensor Factorization Approach
    	8.12 Summary
    	References
    Chapter 9 Event-Related Brain Responses
    	9.1 Introduction
    	9.2 ERP Generation and Types
    		9.2.1 P300 and its Subcomponents
    	9.3 Detection, Separation, and Classification of P300 Signals
    		9.3.1 Using ICA
    		9.3.2 Estimation of Single-Trial Brain Responses by Modelling the ERP Waveforms
    		9.3.3 ERP Source Tracking in Time
    		9.3.4 Time–Frequency Domain Analysis
    		9.3.5 Application of Kalman Filter
    		9.3.6 Particle Filtering and its Application to ERP Tracking
    		9.3.7 Variational Bayes Method
    		9.3.8 Prony\'s Approach for Detection of P300 Signals
    		9.3.9 Adaptive Time–Frequency Methods
    	9.4 Brain Activity Assessment Using ERP
    	9.5 Application of P300 to BCI
    	9.6 Summary
    	References
    Chapter 10 Localization of Brain Sources
    	10.1 Introduction
    	10.2 General Approaches to Source Localization
    		10.2.1 Dipole Assumption
    	10.3 Head Model
    	10.4 Most Popular Brain Source Localization Approaches
    		10.4.1 EEG Source Localization Using Independent Component Analysis
    		10.4.2 MUSIC Algorithm
    		10.4.3 LORETA Algorithm
    		10.4.4 FOCUSS Algorithm
    		10.4.5 Standardized LORETA
    		10.4.6 Other Weighted Minimum Norm Solutions
    		10.4.7 Evaluation Indices
    		10.4.8 Joint ICA–LORETA Approach
    	10.5 Forward Solutions to the Localization Problem
    		10.5.1 Partially Constrained BSS Method
    		10.5.2 Constrained Least-Squares Method for Localization of P3a and P3b
    		10.5.3 Spatial Notch Filtering Approach
    	10.6 The Methods Based on Source Tracking
    		10.6.1 Deflation Beamforming Approach for EEG/MEG Multiple Source Localization
    		10.6.2 Hybrid Beamforming – Particle Filtering
    	10.7 Determination of the Number of Sources from the EEG/MEG Signals
    	10.8 Other Hybrid Methods
    	10.9 Application of Machine Learning for EEG/MEG Source Localization
    	10.10 Summary
    	References
    Chapter 11 Epileptic Seizure Prediction, Detection, and Localization
    	11.1 Introduction
    	11.2 Seizure Detection
    		11.2.1 Adult Seizure Detection from EEGs
    		11.2.2 Detection of Neonatal Seizure
    	11.3 Chaotic Behaviour of Seizure EEG
    	11.4 Seizure Detection from Brain Connectivity
    	11.5 Prediction of Seizure Onset from EEG
    	11.6 Intracranial and Joint Scalp–Intracranial Recordings for IED Detection
    		11.6.1 Introduction to IED
    		11.6.2 iEED-Times IED Detection from Scalp EEG
    		11.6.3 A Multiview Approach to IED Detection
    		11.6.4 Coupled Dictionary Learning for IED Detection
    		11.6.5 A Deep Learning Approach to IED Detection
    	11.7 Fusion of EEG–fMRI Data for Seizure Prediction
    	11.8 Summary
    	References
    Chapter 12 Sleep Recognition, Scoring, and Abnormalities
    	12.1 Introduction
    		12.1.1 Definition of Sleep
    		12.1.2 Sleep Disorder
    	12.2 Stages of Sleep
    		12.2.1 NREM Sleep
    		12.2.2 REM Sleep
    	12.3 The Influence of Circadian Rhythms
    	12.4 Sleep Deprivation
    	12.5 Psychological Effects
    	12.6 EEG Sleep Analysis and Scoring
    		12.6.1 Detection of the Rhythmic Waveforms and Spindles Employing Blind Source Separation
    		12.6.2 Time–Frequency Analysis of Sleep EEG Using Matching Pursuit
    		12.6.3 Detection of Normal Rhythms and Spindles Using Higher-Order Statistics
    		12.6.4 Sleep Scoring Using Tensor Factorization
    		12.6.5 Application of Neural Networks
    		12.6.6 Model-Based Analysis
    	12.7 Detection and Monitoring of Brain Abnormalities during Sleep by EEG and Multimodal PSG Analysis
    		12.7.1 Analysis of Sleep Apnoea
    		12.7.2 EEG and Fibromyalgia Syndrome
    		12.7.3 Sleep Disorders of Neonates
    	12.8 Dreams and Nightmares
    	12.9 EEG and Consciousness
    	12.10 Functional Brain Connectivity for Sleep Analysis
    	12.11 Summary
    	References
    Chapter 13 EEG-Based Mental Fatigue Monitoring
    	13.1 Introduction
    	13.2 Feature-Based Machine Learning Approaches
    		13.2.1 Hidden Markov Model Application
    		13.2.2 Kernel Principal Component Analysis and Hidden Markov Model
    		13.2.3 Regression-Based Fatigue Estimation
    		13.2.4 Regularized Regression
    		13.2.5 Other Feature-Based Approaches
    	13.3 Measurement of Brain Synchronization and Coherency
    		13.3.1 Linear Measure of Synchronization
    		13.3.2 Nonlinear Measure of Synchronization
    	13.4 Evaluation of ERP for Mental Fatigue
    	13.5 Separation of P3a and P3b
    	13.6 A Hybrid EEG–ERP-Based Method for Fatigue Analysis Using an Auditory Paradigm
    	13.7 Assessing Mental Fatigue by Measuring Functional Connectivity
    	13.8 Deep Learning Approaches for Fatigue Evaluation
    	13.9 Summary
    	References
    Chapter 14 EEG-Based Emotion Recognition and Classification
    	14.1 Introduction
    		14.1.1 Theories and Emotion Classification
    		14.1.2 The Physiological Effects of Emotions
    		14.1.3 Psychology and Psychophysiology of Emotion
    		14.1.4 Emotion Regulation
    			14.1.4.1 Agency and Intentionality
    			14.1.4.2 Norm Violation
    			14.1.4.3 Guilt
    			14.1.4.4 Shame
    			14.1.4.5 Embarrassment
    			14.1.4.6 Pride
    			14.1.4.7 Indignation and Anger
    			14.1.4.8 Contempt
    			14.1.4.9 Pity and Compassion
    			14.1.4.10 Awe and Elevation
    			14.1.4.11 Gratitude
    		14.1.5 Emotion-Provoking Stimuli
    	14.2 Effect of Emotion on the Brain
    		14.2.1 ERP Change Due to Emotion
    		14.2.2 Changes of Normal Brain Rhythms with Emotion
    		14.2.3 Emotion and Lateral Brain Engagement
    		14.2.4 Perception of Odours and Emotion: Why Are They Related?
    	14.3 Emotion-Related Brain Signal Processing and Machine Learning
    		14.3.1 Evaluation of Emotion Based on the Changes in Brain Rhythms
    		14.3.2 Brain Asymmetricity and Connectivity for Emotion Evaluation
    		14.3.3 Changes in ERPs for Emotion Recognition
    		14.3.4 Combined Features for Emotion Analysis
    	14.4 Other Physiological Measurement Modalities Used for Emotion Study
    	14.5 Applications
    	14.6 Pain Assessment Using EEG
    	14.7 Emotion Elicitation and Induction through Virtual Reality
    	14.8 Summary
    	References
    Chapter 15 EEG Analysis of Neurodegenerative Diseases
    	15.1 Introduction
    	15.2 Alzheimer\'s Disease
    		15.2.1 Application of Brain Connectivity Estimation to AD and MCI
    		15.2.2 ERP-Based AD Monitoring
    		15.2.3 Other Approaches to EEG-Based AD Monitoring
    	15.3 Motor Neuron Disease
    	15.4 Parkinson\'s Disease
    	15.5 Huntington\'s Disease
    	15.6 Prion Disease
    	15.7 Behaviour Variant Frontotemporal Dementia
    	15.8 Lewy Body Dementia
    	15.9 Summary
    	References
    Chapter 16 EEG As A Biomarker for Psychiatric and Neurodevelopmental Disorders
    	16.1 Introduction
    		16.1.1 History
    			16.1.1.1 Different Psychiatric and Neurodevelopmental Disorders
    			16.1.1.2 NDD Diagnosis
    	16.2 EEG Analysis for Different NDDs
    		16.2.1 ADHD
    			16.2.1.1 ADHD Symptoms and Possible Treatment
    			16.2.1.2 EEG-Based Diagnosis of ADHD
    		16.2.2 ASD
    			16.2.2.1 ASD Symptoms and Possible Treatment
    			16.2.2.2 EEG-Based Diagnosis of ASD
    		16.2.3 Mood Disorder
    			16.2.3.1 EEG for Monitoring Depression
    			16.2.3.2 EEG for Monitoring Bipolar Disorder
    		16.2.4 Schizophrenia
    			16.2.4.1 Schizophrenia Symptoms and Management
    			16.2.4.2 EEG as the Biomarker for Schizophrenia
    		16.2.5 Anxiety (and Panic) Disorder
    			16.2.5.1 Definition and Symptoms
    			16.2.5.2 EEG for Assessing Anxiety
    		16.2.6 Insomnia
    			16.2.6.1 Symptoms of Insomnia
    			16.2.6.2 EEG for Insomnia Analysis
    		16.2.7 Schizotypal Personality Disorder
    			16.2.7.1 What Is Schizotypal Disorder?
    			16.2.7.2 EEG Manifestation of Schizotypal
    	16.3 Summary
    	References
    Chapter 17 Brain–Computer Interfacing Using EEG
    	17.1 Introduction
    		17.1.1 State of the Art in BCI
    		17.1.2 BCI Terms and Definitions
    		17.1.3 Popular BCI Directions
    		17.1.4 Virtual Environment for BCI
    		17.1.5 Evolution of BCI Design
    	17.2 BCI-Related EEG Components
    		17.2.1 Readiness Potential and Its Detection
    		17.2.2 ERD and ERS
    		17.2.3 Transient Beta Activity after the Movement
    		17.2.4 Gamma Band Oscillations
    		17.2.5 Long Delta Activity
    		17.2.6 ERPs
    	17.3 Major Problems in BCI
    		17.3.1 Preprocessing of the EEGs
    	17.4 Multidimensional EEG Decomposition
    		17.4.1 Space–Time–Frequency Method
    		17.4.2 Parallel Factor Analysis
    	17.5 Detection and Separation of ERP Signals
    	17.6 Estimation of Cortical Connectivity
    	17.7 Application of Common Spatial Patterns
    	17.8 Multiclass Brain–Computer Interfacing
    	17.9 Cell-Cultured BCI
    	17.10 Recent BCI Applications
    	17.11 Neurotechnology for BCI
    	17.12 Joint EEG and Other Brain-Scanning Modalities for BCI
    		17.12.1 Joint EEG–fNIRS for BCI
    		17.12.2 Joint EEG–MEG for BCI
    	17.13 Performance Measures for BCI Systems
    	17.14 Summary
    	References
    Chapter 18 Joint Analysis of EEG and Other Simultaneously Recorded Brain Functional Neuroimaging Modalities
    	18.1 Introduction
    	18.2 Fundamental Concepts
    		18.2.1 Functional Magnetic Resonance Imaging
    			18.2.1.1 Blood Oxygenation Level Dependence
    			18.2.1.2 Popular fMRI Data Formats
    			18.2.1.3 Preprocessing of fMRI Data
    		18.2.2 Functional Near-Infrared Spectroscopy
    		18.2.3 Magnetoencephalography
    	18.3 Joint EEG–fMRI
    		18.3.1 Relation Between EEG and fMRI
    		18.3.2 Model-Based Method for BOLD Detection
    		18.3.3 Simultaneous EEG–fMRI Recording: Artefact Removal from EEG
    			18.3.3.1 Gradient Artefact Removal from EEG
    			18.3.3.2 Ballistocardiogram Artefact Removal from EEG
    		18.3.4 BOLD Detection in fMRI
    			18.3.4.1 Implementation of Different NMF Algorithms for BOLD Detection
    			18.3.4.2 BOLD Detection Experiments
    		18.3.5 Fusion of EEG and fMRI
    			18.3.5.1 Extraction of fMRI Time Course from EEG
    			18.3.5.2 Fusion of EEG and fMRI; Blind Approach
    			18.3.5.3 Fusion of EEG and fMRI; Model-Based Approach
    		18.3.6 Application to Seizure Detection
    		18.3.7 Investigation of Decision Making in the Brain
    		18.3.8 Application to Schizophrenia
    		18.3.9 Other Applications
    	18.4 EEG–NIRS Joint Recording and Fusion
    	18.5 MEG–EEG Fusion
    	18.6 Summary
    	References
    Index
    EULA




    نظرات کاربران