ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Econometrics with Machine Learning

دانلود کتاب اقتصاد سنجی با یادگیری ماشینی

Econometrics with Machine Learning

مشخصات کتاب

Econometrics with Machine Learning

دسته بندی: اقتصاد سنجی
ویرایش:  
نویسندگان:   
سری: Advanced Studies in Theoretical and Applied Econometrics, 53 
ISBN (شابک) : 3031151488, 9783031151484 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 385 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 مگابایت 

قیمت کتاب (تومان) : 47,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Econometrics with Machine Learning به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اقتصاد سنجی با یادگیری ماشینی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Foreword
Preface
Acknowledgements
Contents
List of Contributors
Chapter 1 Linear Econometric Models with Machine Learning
	1.1 Introduction
	1.2 Shrinkage Estimators and Regularizers
		1.2.1 ???????? norm, Bridge, LASSO and Ridge
		1.2.2 Elastic Net and SCAD
		1.2.3 Adaptive LASSO
		1.2.4 Group LASSO
	1.3 Estimation
		1.3.1 Computation and Least Angular Regression
		1.3.2 Cross Validation and Tuning Parameters
	1.4 Asymptotic Properties of Shrinkage Estimators
		1.4.1 Oracle Properties
		1.4.2 Asymptotic Distributions
		1.4.3 Partially Penalized (Regularized) Estimator
	1.5 Monte Carlo Experiments
		1.5.1 Inference on Unpenalized Parameters
		1.5.2 Variable Transformations and Selection Consistency
	1.6 Econometrics Applications
		1.6.1 Distributed Lag Models
		1.6.2 Panel Data Models
		1.6.3 Structural Breaks
	1.7 Concluding Remarks
	Appendix
		Proof of Proposition 1.1
	References
Chapter 2 Nonlinear Econometric Models with Machine
Learning
	2.1 Introduction
	2.2 Regularization for Nonlinear Econometric Models
		2.2.1 Regularization with Nonlinear Least Squares
		2.2.2 Regularization with Likelihood Function
			Continuous Response Variable
			Discrete Response Variables
		2.2.3 Estimation, Tuning Parameter and Asymptotic Properties
			Estimation
			Tuning Parameter and Cross-Validation
			Asymptotic Properties and Statistical Inference
		2.2.4 Monte Carlo Experiments – Binary Model with shrinkage
		2.2.5 Applications to Econometrics
	2.3 Overview of Tree-based Methods - Classification Trees and Random Forest
		2.3.1 Conceptual Example of a Tree
		2.3.2 Bagging and Random Forests
		2.3.3 Applications and Connections to Econometrics
			Inference
	2.4 Concluding Remarks
	Appendix
		Proof of Proposition 2.1
		Proof of Proposition 2.2
	References
Chapter 3 The Use of Machine Learning in Treatment Effect Estimation
	3.1 Introduction
	3.2 The Role of Machine Learning in Treatment Effect Estimation: a Selection-on-Observables Setup
	3.3 Using Machine Learning to Estimate Average Treatment Effects
		3.3.1 Direct versus Double Machine Learning
		3.3.2 Why Does Double Machine Learning Work and Direct Machine Learning Does Not?
		3.3.3 DML in a Method of Moments Framework
		3.3.4 Extensions and Recent Developments in DML
	3.4 Using Machine Learning to Discover Treatment Effect Heterogeneity
		3.4.1 The Problem of Estimating the CATE Function
		3.4.2 The Causal Tree Approach
		3.4.3 Extensions and Technical Variations on the Causal Tree Approach
		3.4.4 The Dimension Reduction Approach
	3.5 Empirical Illustration
	3.6 Conclusion
	References
Chapter 4 Forecasting with Machine Learning Methods
	4.1 Introduction
		4.1.1 Notation
		4.1.2 Organization
	4.2 Modeling Framework and Forecast Construction
		4.2.1 Setup
		4.2.2 Forecasting Equation
		4.2.3 Backtesting
		4.2.4 Model Choice and Estimation
	4.3 Forecast Evaluation and Model Comparison
		4.3.1 The Diebold-Mariano Test
		4.3.2 Li-Liao-Quaedvlieg Test
		4.3.3 Model Confidence Sets
	4.4 Linear Models
		4.4.1 Factor Regression
		4.4.2 Bridging Sparse and Dense Models
		4.4.3 Ensemble Methods
			4.4.3.1 Bagging
			4.4.3.2 Complete Subset Regression
	4.5 Nonlinear Models
		4.5.1 Feedforward Neural Networks
			4.5.1.1 Shallow Neural Networks
			4.5.1.2 Deep Neural Networks
		4.5.2 Long Short Term Memory Networks
		4.5.3 Convolution Neural Networks
		4.5.4 Autoenconders: Nonlinear Factor Regression
		4.5.5 Hybrid Models
	4.6 Concluding Remarks
	References
Chapter 5 Causal Estimation of Treatment Effects From Obervational Health Care Data Using Machine Learning Methods
	5.1 Introduction
	5.2 Naïve Estimation of Causal Effects in Outcomes Models with Binary Treatment Variables
	5.3 Is Machine Learning Compatible with Causal Inference?
	5.4 The Potential Outcomes Model
	5.5 Modeling the Treatment Exposure Mechanism–Propensity Score Matching and Inverse Probability Treatment Weights
	5.6 Modeling Outcomes and Exposures: Doubly Robust Methods
	5.7 Targeted Maximum Likelihood Estimation (TMLE) for Causal Inference
	5.8 Empirical Applications of TMLE in Health Outcomes Studies
		5.8.1 Use of Machine Learning to Estimate TMLE Models
	5.9 Extending TMLE to Incorporate Instrumental Variables
	5.10 Some Practical Considerations on the Use of IVs
	5.11 Alternative Definitions of Treatment Effects
	5.12 A Final Word on the Importance of Study Design in Mitigating Bias
	References
Chapter 6 Econometrics of Networks with Machine
Learning
	6.1 Introduction
	6.2 Structure, Representation, and Characteristics of Networks
	6.3 The Challenges of Working with Network Data
	6.4 Graph Dimensionality Reduction
		6.4.1 Types of Embeddings
		6.4.2 Algorithmic Foundations of Embeddings
	6.5 Sampling Networks
		6.5.1 Node Sampling Approaches
		6.5.2 Edge Sampling Approaches
			Hybrid Approaches and the Importance of the Problem
		6.5.3 Traversal-Based Sampling Approaches
			6.5.3.1 Search Based Techniques
				Pseudo Code for Search-Based Sampling Algorithms.
			6.5.3.2 RandomWalk-Based Techniques
	6.6 Applications of Machine Learning in the Econometrics of Networks
		6.6.1 Applications of Machine Learning in Spatial Models
		6.6.2 Gravity Models for Flow Prediction
		6.6.3 The Geographically Weighted Regression Model and ML
	6.7 Concluding Remarks
	References
Chapter 7 Fairness in Machine Learning and Econometrics
	7.1 Introduction
	7.2 Examples in Econometrics
		7.2.1 Linear IV Model
		7.2.2 A Nonlinear IV Model with Binary Sensitive Attribute
		7.2.3 Fairness and Structural Econometrics
	7.3 Fairness for Inverse Problems
	7.4 Full Fairness IV Approximation
		7.4.1 Projection onto Fairness
		7.4.2 Fair Solution of the Structural IV Equation
		7.4.3 Approximate Fairness
	7.5 Estimation with an Exogenous Binary Sensitive Attribute
	7.6 An Illustration
	7.7 Conclusions
	References
Chapter 8 Graphical Models and their Interactions with
Machine Learning in the Context of Economics
and Finance
	8.1 Introduction
		8.1.1 Notation
	8.2 Graphical Models: Methodology and Existing Approaches
		8.2.1 Graphical LASSO
		8.2.2 Nodewise Regression
		8.2.3 CLIME
		8.2.4 Solution Techniques
	8.3 Graphical Models in the Context of Finance
		8.3.1 The No-Short-Sale Constraint and Shrinkage
		8.3.2 The A-Norm Constraint and Shrinkage
		8.3.3 Classical Graphical Models for Finance
		8.3.4 Augmented Graphical Models for Finance Applications
	8.4 Graphical Models in the Context of Economics
		8.4.1 Forecast Combinations
		8.4.2 Vector Autoregressive Models
	8.5 Further Integration of Graphical Models with Machine Learning
	References
Chapter 9 Poverty, Inequality and Development Studies with
Machine Learning
	9.1 Introduction
	9.2 Measurement and Forecasting
		9.2.1 Combining Sources to Improve Data Availability
		9.2.2 More Granular Measurements
			9.2.2.1 Data Visualization and High-Resolution Maps
			9.2.2.2 Interpolation
			9.2.2.3 Extended Regional Coverage
			9.2.2.4 Extrapolation
		9.2.3 Dimensionality Reduction
		9.2.4 Data Imputation
		9.2.5 Methods
	9.3 Causal Inference
		9.3.1 Heterogeneous Treatment Effects
		9.3.2 Optimal Treatment Assignment
		9.3.3 Handling High-Dimensional Data and Debiased ML
		9.3.4 Machine-Building Counterfactuals
		9.3.5 New Data Sources for Outcomes and Treatments
		9.3.6 Combining Observational and Experimental Data
	9.4 Computing Power and Tools
	9.5 Concluding Remarks
	References
Chapter 10 Machine Learning for Asset Pricing
	10.1 Introduction
	10.2 How Machine Learning Techniques Can Help Identify Stochastic Discount Factors
	10.3 How Machine Learning Techniques Can Test/Evaluate Asset Pricing Models
	10.4 How Machine Learning Techniques Can Estimate Linear Factor Models
		10.4.1 Gagliardini, Ossola, and Scaillet’s (2016) Econometric Two-Pass Approach for Assessing Linear Factor Models
		10.4.2 Kelly, Pruitt, and Su’s (2019) Instrumented Principal Components Analysis
		10.4.3 Gu, Kelly, and Xiu’s (2021) Autoencoder
		10.4.4 Kozak, Nagel, and Santosh’s (2020) Regularized Bayesian Approach
		10.4.5 Which Factors to Choose and How to Deal withWeak Factors?
	10.5 How Machine Learning Can Predict in Empirical Asset Pricing
	10.6 Concluding Remarks
	Appendix 1: An Upper Bound for the Sharpe Ratio
	Appendix 2: A Comparison of Different PCA Approaches
	References
Appendix A Terminology
	A.1 Introduction
	A.2 Terms




نظرات کاربران