ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Ecology: From Individuals to Ecosystems, 4th Edition

دانلود کتاب اکولوژی: از افراد گرفته تا اکوسیستم ها ، چاپ 4

Ecology: From Individuals to Ecosystems, 4th Edition

مشخصات کتاب

Ecology: From Individuals to Ecosystems, 4th Edition

دسته بندی: بوم شناسی
ویرایش: 4 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 1405111178, 9781405111171 
ناشر: Wiley-Blackwell 
سال نشر: 2006 
تعداد صفحات: 759 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 14 مگابایت 

قیمت کتاب (تومان) : 36,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 18


در صورت تبدیل فایل کتاب Ecology: From Individuals to Ecosystems, 4th Edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اکولوژی: از افراد گرفته تا اکوسیستم ها ، چاپ 4 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب اکولوژی: از افراد گرفته تا اکوسیستم ها ، چاپ 4

بگون، تاونسند و اکولوژی هارپر مدتهاست که به عنوان کتاب درسی قطعی در مورد تمام جنبه های اکولوژی در نظر گرفته شده است. این نسخه جدید به ارائه یک درمان جامع از موضوع از اولین اصول بوم شناسی تا بازتابی واضح از درک ما از بوم شناسی در قرن بیست و یکم ادامه می دهد. این ویرایش چهارم که به طور کامل اصلاح و به روز شده است شامل: سه فصل جدید در مورد بوم شناسی کاربردی، منعکس کننده یک رویکرد دقیق و علمی به مشکلات زیست محیطی است که اکنون بشر با بحث در مورد بیش از 750 مطالعه جدید با آن مواجه است، به روز رسانی متن در یک طرح به روز شده و کاربرپسند با حاشیه. یادداشت‌ها و خلاصه‌های فصلی که به عنوان وب‌سایت اختصاصی کمک آموزشی عمل می‌کنند کتاب درسی به‌دست‌آمده برای استفاده آسان، شفاف و به‌روز است و مرجع ضروری برای همه دانش‌آموزانی است که برنامه مدرک آنها شامل محیط‌زیست و بوم‌شناسان شاغل است.


توضیحاتی درمورد کتاب به خارجی

Begon, Townsend and Harper’s Ecology has long been regarded as the definitive textbook on all aspects of ecology. This new edition continues to provide a comprehensive treatment of the subject from the first principles of ecology to a vivid reflection of our understanding of ecology in the 21st century. Thoroughly revised and updated, this fourth edition includes: three new chapters on applied ecology, reflecting a rigorous, scientific approach to the ecological problems now facing mankind discussion of over 750 new studies, updating the text throughout an updated, user-friendly design with margin notes and chapter summaries that serve as study aids dedicated website The resulting textbook is easy to use, lucid and up-to-date, and is the essential reference for all students whose degree program includes ecology and for practising ecologists.



فهرست مطالب

Cover Page......Page 1
Title Page......Page 4
ISBN 1405111178......Page 5
Part 2: Species Interactions......Page 6
Part 3: Communities and Ecosystems......Page 7
Nineteen years on: applied ecology has come of age......Page 8
Acknowledgements......Page 9
Definition and scope of ecology......Page 12
Pure and applied ecology......Page 13
Introduction......Page 14
1.1 Introduction: natural selection and adaptation......Page 16
1.2.1 Geographic variation within species: ecotypes......Page 18
1.2.2 Genetic polymorphism......Page 19
1.2.3 Variation within a species with manmade selection pressures......Page 21
1.3.1 What do we mean by a ‘species’?......Page 22
1.3.2 Islands and speciation......Page 24
1.4.2 Movements of land masses......Page 26
1.4.3 Climatic changes......Page 29
1.4.4 Convergents and parallels......Page 32
1.5.1 Terrestrial biomes of the earth......Page 33
1.5.2 The ‘life form spectra’ of communities......Page 37
1.6.1 Environments are heterogeneous......Page 38
1.6.2 Pairs of species......Page 40
1.6.3 Coexistence of similar species......Page 41
Summary......Page 42
2.1 Introduction......Page 43
2.2 Ecological niches......Page 44
2.3.1 What do we mean by ‘extreme’?......Page 45
2.3.2 Metabolism, growth, development and size......Page 46
2.3.3 Ectotherms and endotherms......Page 47
2.3.4 Life at low temperatures......Page 49
2.3.5 Genetic variation and the evolution of cold tolerance......Page 50
2.3.6 Life at high temperatures......Page 53
2.4.2 Typical temperatures and distributions......Page 54
2.4.3 Distributions and extreme conditions......Page 58
2.4.4 Distributions and the interaction of temperature with other factors......Page 59
2.5 pH of soil and water......Page 60
2.6.1 Conditions at the boundary between the sea and land......Page 61
2.8 Environmental pollution......Page 63
2.9.1 Industrial gases and the greenhouse effect......Page 65
2.9.2 Global warming......Page 67
Summary......Page 69
3.2 Radiation......Page 71
3.2.1 Variations in the intensity and quality of radiation......Page 72
3.2.2 Net photosynthesis......Page 76
3.2.3 Sun and shade plants of an evergreen shrub......Page 79
3.2.4 Photosynthesis or water conservation? Strategic and tactical solutions......Page 80
3.3 Carbon dioxide......Page 82
3.3.1 The C3 pathway......Page 83
3.3.4 The response of plants to changing atmospheric concentrations of CO2......Page 84
3.4.1 Roots as water foragers......Page 86
3.5 Mineral nutrients......Page 88
3.7 Organisms as food resources......Page 91
3.7.1 The nutritional content of plants and animals as food......Page 92
3.7.2 Digestion and assimilation of plant material......Page 95
3.7.4 Chemical defenses......Page 96
3.7.5 Crypsis, aposematism and mimicry......Page 98
3.8.1 Essential resources......Page 99
3.8.3 Resource dimensions of the ecological niche......Page 100
Summary......Page 101
4.2.1 Unitary and modular organisms......Page 102
4.2.4 Senescence – or the lack of it – in modular organisms......Page 105
4.2.5 Integration......Page 106
4.3 Counting individuals......Page 107
4.4 Life cycles......Page 108
4.5.1 Simple annuals: cohort life tables......Page 111
4.5.2 Fecundity schedules and basic reproductive rates......Page 112
4.5.4 A classification of survivorship curves......Page 113
4.5.5 Seed banks, ephemerals and other not-quite-annuals......Page 114
4.6.1 Cohort life tables......Page 115
4.6.2 Static life tables......Page 116
4.6.4 The importance of modularity......Page 117
4.7.1 Relationships between the variables......Page 118
4.7.2 Estimating the variables from life tables and fecundity schedules......Page 120
4.7.3 The population projection matrix......Page 121
4.8.1 Components of life histories......Page 123
4.8.2 Reproductive value......Page 124
4.8.3 Trade-offs......Page 125
4.8.4 The cost of reproduction......Page 128
4.8.5 The number and fitness of offspring......Page 129
4.9.1 Options sets and fitness contours......Page 130
4.9.2 Habitats: a classification......Page 131
4.10.2 Age at maturity......Page 132
4.11 The size and number of offspring......Page 134
4.11.1 The number of offspring: clutch size......Page 135
4.12 r and K selection......Page 136
4.13 Phenotypic plasticity......Page 137
4.14 Phylogenetic and allometric constraints......Page 139
4.14.1 Effects of size and allometry......Page 140
4.14.2 Effects of phylogeny......Page 142
Summary......Page 144
5.1.1 Exploitation and interference......Page 145
5.1.2 One-sided competition......Page 146
5.2 Intraspecific competition, and density-dependent mortality and fecundity......Page 147
5.3 Density or crowding?......Page 148
5.4.1 Carrying capacities......Page 151
5.4.3 Sigmoidal growth curves......Page 153
5.5.1 The law of constant final yield......Page 154
5.6 Quantifying intraspecific competition......Page 155
5.7 Mathematical models: introduction......Page 158
5.8.1 Basic equations......Page 159
5.8.3 Time lags......Page 160
5.8.4 Incorporating a range of competition......Page 161
5.8.5 Chaos......Page 162
5.9 Continuous breeding: the logistic equation......Page 163
5.10.1 Size inequalities......Page 164
5.10.2 Preempting resources......Page 165
5.11 Territoriality......Page 167
5.12.1 Dynamic thinning lines......Page 169
5.12.2 Species and population boundary lines......Page 171
5.12.4 A geometric basis for self-thinning......Page 172
Summary......Page 174
6.2.1 Passive dispersal: the seed rain......Page 176
6.2.2 Passive dispersal by a mutualistic agent......Page 177
6.2.3 Active discovery and exploration......Page 178
6.3 Patterns of distribution: dispersion......Page 179
6.3.2 Forces favoring aggregations (in space and time)......Page 180
6.4.1 Tidal, diurnal and seasonal movements......Page 181
6.4.2 Long-distance migration......Page 182
6.4.3 ‘One-way only’ migration......Page 183
6.5.2 Dormancy in plants......Page 184
6.6.2 Avoiding kin competition......Page 186
6.6.3 Philopatry......Page 187
6.7.1 Dispersal polymorphism......Page 188
6.8.1 Modeling dispersal: the distribution of patches......Page 189
6.8.2 Dispersal and the demography of single populations......Page 190
6.8.3 Invasion dynamics......Page 191
6.9.2 The development of metapopulation theory: islands and metapopulations......Page 193
6.9.3 When is a population a metapopulation?......Page 194
6.9.4 Metapopulation dynamics......Page 196
Summary......Page 198
7.1 Introduction......Page 199
7.2.1 Restoration of habitats impacted by human activities......Page 200
7.2.2 Dealing with invasions......Page 203
7.2.3 Conservation of endangered species......Page 205
7.3.2 Species traits as predictors for setting biosecurity priorities......Page 207
7.3.3 Species traits as predictors for conservation and harvest management priorities......Page 209
7.4.1 Restoration and migratory species......Page 210
7.4.2 Predicting the spread of invaders......Page 212
7.4.3 Conservation of migratory species......Page 214
7.5 Dynamics of small populations and the conservation of endangered species......Page 215
7.5.2 Where should we focus conservation effort?......Page 216
7.5.3 Genetics of small populations: significance for species conservation......Page 218
7.5.4 Uncertainty and the risk of extinction: the population dynamics of small populations......Page 220
7.5.5.1 Clues from long-term studies of biogeographic patterns......Page 222
7.5.5.2 Subjective expert assessment......Page 224
7.5.5.3 A general mathematical model of population persistence time......Page 225
7.5.5.4 Simulation models: population viability analysis (PVA)......Page 226
7.5.6 Conservation of metapopulations......Page 230
7.6.1 Predicting the spread of diseases and other invaders in a changing world......Page 231
7.6.2 Managing endangered species......Page 234
Summary......Page 235
Introduction......Page 238
8.2.2 Competition between barnacles......Page 240
8.2.4 Competition between Paramecium species......Page 242
8.2.6 Competition between diatoms......Page 243
8.3.2 Exploitation and interference competition and allelopathy......Page 245
8.3.4 Competition for one resource may influence competition for another......Page 246
8.4.1 A logistic model of interspecific competition......Page 247
8.4.2 The Competitive Exclusion Principle......Page 250
8.4.3 Mutual antagonism......Page 251
8.5 Heterogeneity, colonization and preemptive competition......Page 252
8.5.2 Unpredictable gaps: the preemption of space......Page 253
8.5.5 Aggregated distributions......Page 254
8.6 Apparent competition: enemy-free space......Page 257
8.7.2 Single-generation experiments......Page 261
8.8.1 Natural experiments......Page 263
8.8.2 Experimenting with natural experiments......Page 266
8.8.3 Selection experiments......Page 267
8.9 Niche differentiation and similarity amongst coexisting competitors......Page 269
8.10 Niche differentiation and mechanisms of exploitation......Page 271
8.10.2 Exploitation of two resources......Page 273
Summary......Page 277
9.1 Introduction: the types of predators......Page 279
9.2.1 Tolerance and plant compensation......Page 280
9.2.2 Defensive responses of plants......Page 281
9.2.3 Herbivory, defoliation and plant growth......Page 283
9.2.4 Herbivory and plant survival......Page 284
9.2.5 Herbivory and plant fecundity......Page 285
9.3 The effect of predation on prey populations......Page 287
9.4 Effects of consumption on consumers......Page 289
9.5 Widths and compositions of diets......Page 291
9.5.1 Food preferences......Page 292
9.5.2 Switching......Page 294
9.5.3 The optimal foraging approach to diet width......Page 295
9.5.4 Foraging in a broader context......Page 298
9.6.1 Behavior that leads to aggregated distributions......Page 300
9.6.2 Optimal foraging approach to patch use......Page 301
9.6.3 Ideal free and related distributions: aggregation and interference......Page 306
Summary......Page 308
10.2 The basic dynamics of predator–prey and plant–herbivore systems: a tendency towards cycles......Page 310
10.2.1 The Lotka–Volterra model......Page 311
10.2.2 Delayed density dependence......Page 312
10.2.3 The Nicholson–Bailey model......Page 314
10.2.5 Predator–prey cycles in nature: or are they?......Page 315
10.3 Effects of crowding......Page 316
10.3.1 Crowding in the Lotka–Volterra model......Page 317
10.4.2 The type 2 functional response......Page 320
10.4.4 Consequences for population dynamics of functional responses and the Allee effect......Page 321
10.5.1 Aggregative responses to prey density......Page 324
10.5.4 Aggregation of risk and spatial density dependence......Page 325
10.5.5 Heterogeneity in some continuous-time models......Page 327
10.5.6 The metapopulation perspective......Page 328
10.5.7 Aggregation, heterogeneity and spatial variation in practice......Page 329
10.6 Multiple equilibria: an explanation for outbreaks?......Page 334
Summary......Page 337
11.1 Introduction......Page 339
11.2.1 Decomposers: bacteria and fungi......Page 340
11.2.2 Detritivores and specialist microbivores......Page 342
11.2.3 The relative roles of decomposers and detritivores......Page 346
11.2.4 Ecological stoichiometry and the chemical composition of decomposers, detritivores and their resources......Page 349
11.3.1 Consumption of plant detritus......Page 350
11.3.2 Consumption of fallen fruit......Page 352
11.3.3 Feeding on invertebrate feces......Page 353
11.3.4 Feeding on vertebrate feces......Page 354
11.3.5 Consumption of carrion......Page 355
11.4 Conclusion......Page 358
Summary......Page 359
12.2 The diversity of parasites......Page 360
12.2.2 Macroparasites......Page 362
12.2.3 Brood and social parasitism......Page 363
12.3.2 Host specificity: host ranges and zoonoses......Page 364
12.3.5 Hosts as reactive environments: resistance, recovery and immunity......Page 365
12.3.7 Parasite-induced changes in growth and behavior......Page 367
12.3.8 Competition within hosts......Page 368
12.4.1 Transmission......Page 370
12.4.3 Contact rates: density- and frequency-dependent transmission......Page 371
12.4.4 Host diversity and the spatial spread of disease......Page 373
12.5 Effects of parasites on the survivorship, growth and fecundity of hosts......Page 374
12.6.2 Directly transmitted microparasites: R0 and the critical population size......Page 378
12.6.3 Directly transmitted microparasites: the epidemic curve......Page 379
12.6.5 Directly transmitted microparasites: immunization programs......Page 380
12.6.7 Crop pathogens: macroparasites viewed as microparasites......Page 381
12.6.8 Other classes of parasite......Page 382
12.6.9 Parasites in metapopulations: measles......Page 383
12.7 Parasites and the population dynamics of hosts......Page 384
12.7.1 Coupled (interactive) or modified host dynamics?......Page 385
12.7.3 Svarlbard reindeer and nematodes......Page 386
12.7.4 Red foxes and rabies......Page 389
12.8 Coevolution of parasites and their hosts......Page 391
Summary......Page 393
13.1 Introduction: symbionts, mutualists, commensals and engineers......Page 394
13.2.1 Cleaner and client fish......Page 395
13.2.2 Ant–plant mutualisms......Page 396
13.3.1 Human agriculture......Page 398
13.4.2 Pollination mutualisms......Page 400
13.4.3 Brood site pollination: figs and yuccas......Page 403
13.5.1 Vertebrate guts......Page 404
13.5.2 Ruminant guts......Page 405
13.5.4 Termite guts......Page 406
13.6 Mutualism within animal cells: insect mycetocyte symbioses......Page 407
13.7.1 Reef-building corals and coral bleaching......Page 408
13.8 Mutualisms involving higher plants and fungi......Page 409
13.8.2 Arbuscular mycorrhizas......Page 411
13.9 Fungi with algae: the lichens......Page 413
13.10 Fixation of atmospheric nitrogen in mutualistic plants......Page 414
13.10.2 Costs and benefits of rhizobial mutualisms......Page 415
13.10.3 Nitrogen-fixing mutualisms in nonleguminous plants......Page 416
13.10.4 Interspecific competition......Page 417
13.10.5 Nitrogen-fixing plants and succession......Page 418
13.11 Models of mutualisms......Page 419
13.12 Evolution of subcellular structures from symbioses......Page 420
Summary......Page 421
14.1.1 Correlation, causation and experimentation......Page 423
14.2.1 Determination and regulation of abundance......Page 424
14.2.2 Theories of abundance......Page 426
14.2.3 Approaches to the investigation of abundance......Page 427
14.3.1 Key factor analysis......Page 428
14.3.2 Sensitivities, elasticities and l-contribution analysis......Page 432
14.4.2 Experimental perturbation of populations......Page 435
14.5.1 Time series analysis: dissecting density dependence......Page 437
14.5.2 Time series analysis: counting and characterizing lags......Page 438
14.5.3 Combining density dependence and independence – weather and ecological interactions......Page 439
14.6.2 Red grouse......Page 442
14.6.3 Snowshoe hares......Page 444
14.6.4 Microtine rodents: lemmings and voles......Page 446
Summary......Page 450
15.1 Introduction......Page 452
15.2.1 Economic injury level and economic thresholds......Page 453
15.2.2.2 Herbicides......Page 454
15.2.2.3 Target pest resurgence......Page 455
15.2.3 Herbicides, weeds and farmland birds......Page 457
15.2.4 Evolution of resistance to pesticides......Page 458
15.2.5 Biological control......Page 459
15.2.6 Integrated pest management......Page 461
15.3 Harvest management......Page 463
15.3.1 Maximum sustainable yield......Page 464
15.3.3 A safer alternative: fixed harvesting effort......Page 465
15.3.4 Other MSY approaches: harvesting a fixed proportion or allowing constant escapement......Page 466
15.3.5 Instability of harvested populations: multiple equilibria......Page 467
15.3.6 Instability of harvested populations: environmental fluctuations......Page 468
15.3.7 Recognizing structure in harvested populations: dynamic pool models......Page 469
15.3.8 Objectives for managing harvestable resources......Page 471
15.3.9 Economic and social factors......Page 472
15.3.10 Estimates from data: putting management into practice......Page 473
15.4.1 Biological control in a fragmented landscape......Page 475
15.4.2 Designing reserve networks for fisheries management......Page 476
Summary......Page 477
Introduction......Page 480
16.1 Introduction......Page 482
16.2 Description of community composition......Page 483
16.2.1 Diversity indices......Page 484
16.2.2 Rank–abundance diagrams......Page 485
16.3.1 Gradient analysis......Page 487
16.3.2 Classification and ordination of communities......Page 490
16.4 Community patterns in time......Page 491
16.4.2 Primary and secondary successions......Page 492
16.4.4 Primary succession on coastal sand dunes......Page 493
16.5 Species replacement probabilities during successions......Page 495
16.6.1 Competition–colonization trade-off and successional niche mechanisms......Page 496
16.6.2 Facilitation......Page 497
16.6.5 Vital attributes......Page 498
16.6.6 The role of animals in successions......Page 499
16.6.7 Concept of the climax......Page 501
16.7.1 Dominance-controlled communities......Page 502
16.7.2 Frequency of gap formation......Page 503
16.7.3 Formation and filling of gaps......Page 505
16.7.4 Founder-controlled communities......Page 506
16.8 Conclusions: the need for a landscape perspective......Page 509
Summary......Page 510
17.1 Introduction......Page 512
17.2 Patterns in primary productivity......Page 513
17.2.2 Seasonal and annual trends in primary productivity......Page 514
17.2.3 Autochthonous and allochthonous production......Page 515
17.2.4 Variations in the relationship of productivity to biomass......Page 517
17.3 Factors limiting primary productivity in terrestrial communities......Page 518
17.3.2 Water and temperature as critical factors......Page 520
17.3.4 Length of the growing season......Page 522
17.3.6 Résumé of factors limiting terrestrial productivity......Page 523
17.4.2 Nutrients in lakes......Page 525
17.4.3 Nutrients and the importance of upwellings in oceans......Page 526
17.4.4 Productivity varies with depth in aquatic communities......Page 528
17.5.1 Relationships between primary and secondary productivity......Page 529
17.5.2 Possible pathways of energy flow through a food web......Page 530
17.5.3 The importance of transfer efficiencies in determining energy pathways......Page 532
17.5.4 Energy flow through contrasting communities......Page 534
Summary......Page 537
18.1.1 Relationships between energy flux and nutrient cycling......Page 538
18.1.2 Biogeochemistry and biogeochemical cycles......Page 539
18.2.1 Inputs to terrestrial communities......Page 540
18.2.3 Carbon inputs and outputs may vary with forest age......Page 543
18.2.4 Importance of nutrient cycling in relation to inputs and outputs......Page 544
18.3.1 Streams......Page 546
18.3.2 Lakes......Page 547
18.3.3 Estuaries......Page 550
18.3.5 Open oceans......Page 551
18.4.1 Hydrological cycle......Page 555
18.4.3 Phosphorus cycle......Page 556
18.4.4 Nitrogen cycle......Page 558
18.4.5 Sulfur cycle......Page 559
18.4.6 Carbon cycle......Page 560
Summary......Page 561
19.2.1 Prevalence of current competition in communities......Page 563
19.2.2 Structuring power of competition......Page 565
19.2.3.1 Niche complementarity......Page 566
19.2.3.3 Niche differentiation in time......Page 568
19.2.3.4 Niche differentiation – apparent or real? Null models......Page 569
19.2.4 Evidence from morphological patterns......Page 573
19.2.5 Evidence from negatively associated distributions......Page 574
19.2.6 Appraisal of the role of competition......Page 577
19.3 Equilibrium and nonequilibrium views of community organization......Page 578
19.4.1 Effects of grazers......Page 579
19.4.2 The effect of carnivores......Page 581
19.5 Influence of parasitism on community structure......Page 584
19.6 Appraisal of the effects of predators and parasites......Page 586
19.7 Pluralism in community ecology......Page 588
Summary......Page 590
20.2.1 ‘Unexpected’ effects......Page 591
20.2.2 Trophic cascades......Page 593
20.2.3 Four trophic levels......Page 594
20.2.5 Top-down or bottom-up control of food webs? Why is the world green?......Page 596
20.2.6 Strong interactors and keystone species......Page 597
20.3 Food web structure, productivity and stability......Page 598
20.3.3 Complexity and stability in model communities: populations......Page 599
20.3.5 Complexity and stability in practice: populations......Page 601
20.3.6 Complexity and stability in practice: whole communities......Page 604
20.4 Empirical patterns in food webs: the number of trophic levels......Page 606
20.4.1 Productivity? Productive space? Or just space?......Page 608
20.4.3 Constraints on predator design and behavior......Page 610
20.4.5 Compartmentalization......Page 611
Summary......Page 612
21.1 Introduction......Page 615
21.2 A simple model of species richness......Page 616
21.2.1 The relationship between local and regional species richness......Page 617
21.3.1 Productivity and resource richness......Page 618
21.3.2 Spatial heterogeneity......Page 622
21.4 Temporally varying factors that influence species richness......Page 624
21.4.2 Environmental age: evolutionary time......Page 625
21.5.1 MacArthur and Wilson’s ‘equilibrium’ theory......Page 626
21.5.2 Habitat diversity alone – or a separate effect of area?......Page 628
21.5.4 Which species? Turnover......Page 631
21.5.6 Which species? Evolution......Page 633
21.6 Gradients of species richness......Page 634
21.6.1 Latitudinal gradients......Page 635
21.6.2 Gradients with altitude and depth......Page 636
21.6.3 Gradients during community succession......Page 638
21.6.4 Patterns in taxon richness in the fossil record......Page 639
21.7.1 Positive relationships between species richness and ecosystem functioning......Page 640
21.7.2 Contrasting explanations for richness–ecosystem process relationships......Page 641
21.8 Appraisal of patterns in species richness......Page 643
Summary......Page 644
22.1 Introduction......Page 646
22.2.1 Managing succession in agroecosystems......Page 647
22.2.2 Managing succession for restoration......Page 650
22.2.3 Managing succession for conservation......Page 651
22.3.1.1 Lyme disease......Page 652
22.3.1.3 Invasions by salmonid fish in streams and lakes......Page 653
22.3.1.4 Conflicting hypotheses about invasions......Page 654
22.3.2 Managing eutrophication by manipulating lake food webs......Page 655
22.3.3 Managing ecosystem processes in agriculture......Page 657
22.3.4 Ecosystem health and its assessment......Page 658
22.4.1 Selecting conservation areas......Page 659
22.4.2 Multipurpose reserve design......Page 664
22.5.1 Economic perspective......Page 666
22.5.2 Social perspectives......Page 667
22.5.3 Putting it all together......Page 668
Summary......Page 670
References......Page 672
A......Page 714
B......Page 715
C......Page 716
F......Page 718
G,H......Page 719
K,L......Page 720
N......Page 721
O,P......Page 722
Q,R......Page 723
S......Page 724
T......Page 725
Y,Z......Page 726
A......Page 727
B......Page 728
C......Page 729
D......Page 732
E......Page 733
F......Page 735
G......Page 736
H......Page 737
I......Page 738
J,K,L......Page 739
M......Page 740
N......Page 741
P......Page 742
Q,R......Page 746
S......Page 747
T......Page 749
W......Page 750
Y,Z......Page 751
Plate 1.1 Arctic tundra, Greenland......Page 752
Plate 1.3 Temperate forest......Page 753
Plate 1.5 Desert......Page 754
Plate 1.6 Rainforest......Page 755
Plate 2.1 Maps of examples of El Niño......Page 756
Plate 2.2 Typical winter conditions when the NAO index is positive or negative......Page 757
Plate 4.1 Modular plants and animals, showing the underlying parallels in the various ways......Page 758




نظرات کاربران