دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Sergey Pulinets, Dimitar Ouzounov, Alexander Karelin, Kyrill Boyarchuk سری: ISBN (شابک) : 940242170X, 9789402421705 ناشر: Springer سال نشر: 2023 تعداد صفحات: 308 [309] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 Mb
در صورت تبدیل فایل کتاب Earthquake Precursors in the Atmosphere and Ionosphere: New Concepts به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیش سازهای زلزله در اتمسفر و یونوسفر: مفاهیم جدید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به این موضوع میپردازد که چگونه افزایش انتشار رادون و سایر گازها از پوسته زمین در مجاورت گسلهای تکتونیکی فعال، زنجیرهای از فرآیندهای فیزیکی و واکنشهای شیمیایی را در لایه مرزی جو و یونوسفر زمین در منطقه زلزلهای چند روز/ساعت قبل از آن ایجاد میکند. شوک های لرزه ای قوی رخ می دهد. این دو مفهوم اصلی درگیر در این مکانیسم را ارائه می دهد: یونیزاسیون جو و مدار الکتریکی جهانی. مفهوم جفت لیتوسفر-اتمسفر-یونوسفر (LAIC) به شدت توسط داده های تجربی نشان می دهد که پیش سازهای جوی و یونوسفر را برای زمین لرزه های بزرگ اخیر از جمله سوماترا 2004 نشان می دهد. 2008 سیچوان، چین; 2011 توهوکو، ژاپن; و 2015 نپال. این کتاب نه تنها به ملاحظات نظری می پردازد، بلکه شامل اطلاعاتی در مورد تکنیک های تجربی مورد استفاده برای مشاهدات پیش ساز بر اساس سیستم های فضایی است. این کتاب با ارائه روش های عملی شناسایی و تفسیر پیش سازها، یک کتاب درسی عالی برای دوره های تحصیلات تکمیلی ژئوفیزیک، علوم زلزله، فیزیک جو و سنجش از دور است. علاوه بر این، اطلاعات زیادی را برای دانشمندان و کارشناسان آژانسهای دولتی و بینالمللی که در زمینههای کاهش، واکنش و بازیابی بلایای طبیعی کار میکنند، ارائه میکند.
This book discusses how the increased emanation of radon and other gases from the Earth’s crust in the vicinity of active tectonic faults triggers a chain of physical processes and chemical reactions in the atmospheric boundary layer and the Earth’s ionosphere over an earthquake area several days/hours before strong seismic shocks occur. It presents the two main concepts involved in this mechanism: atmosphere ionization and the global electric circuit. The Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) concept is strongly supported by experimental data showing the atmospheric and ionospheric precursors for major recent earthquakes including 2004 Sumatra; 2008 Sichuan, China; 2011 Tohoku, Japan; and 2015 Nepal. The book not only addresses the theoretical considerations but also includes information on experimental techniques used for precursor observations based on the space-borne systems. Providing practical methods of precursor identification and interpretation, it is an excellent textbook for graduate courses in geophysics, earthquake science, atmospheric physics and remote sensing. Moreover, it offers a wealth of information for scientists and experts from governmental and international agencies working in the fields of natural-disaster mitigation, response and recovery.
Preface Introduction: The Basics of the Lithosphere‒Atmosphere‒Ionosphere Coupling (LAIC) Model What Does the Coupling Mean? LAIC Model Schematic Presentation References Contents 1 Near-Ground Processes as a Result of Air Ionization 1.1 Radon as a Main Source of Air Ionization in Seismically Active Areas 1.1.1 Radon Production, Transport and Gas Migration 1.1.2 Radon Spatial Distribution Within Earthquake Preparation Zone 1.1.3 Is It Possible to Identify Precursory Radon Variations? 1.2 Ionization and Near-Ground Plasmachemistry 1.2.1 Peculiarities of Ionization of Atmospheric Air: Track Structure 1.2.2 Low Degree of Ionization: The Model of Stable Ions Formation in the Low Layers of the Atmosphere 1.2.3 Analysis of Processes of the Main Negative Ions Formation in the Lower Atmosphere 1.2.4 Analysis of Main Positive Ions Formation Processes in the Lower Atmosphere 1.2.5 The Concept of Neutral Ion Clusters in Air 1.2.6 Condensation Versus Ion Hydration 1.3 Latent Heat as a Result of Ion Hydration, and the Main Source of Thermal Anomalies and Air Humidity Variations 1.3.1 Atmospheric Chemical Potential as Indicator of Radon Activity and Thermodynamic Instability in the Atmosphere References 2 Earthquake Precursory Phenomena in the Atmosphere 2.1 Thermal Balance of Ionization and Meteorological Phenomena 2.1.1 Energetics of Radon Emanation 2.1.2 Energetics of Ionization and IIN in the Boundary Layer 2.2 Thermal Convection and Formation of Linear Cloud Anomalies or EQ Clouds 2.2.1 Possible Physical Mechanism of LCA Formation 2.3 Latent Heat (LH) in the Atmosphere Associated with Earthquake Processes 2.3.1 Experimental Estimation of LH Associated with M9.3 on December 26th, 2004 and M8.5 on March 28th, 2005 Near the Sumatra Earthquakes 2.3.2 Pre-earthquake LH Anomalies Associated with the 2011 M9.0 Tohoku Earthquake in Japan 2.3.3 LH Energies Associated with the 2011 M9.0 Tohoku Earthquake in Japan 2.4 Outgoing Long-Wave Radiation (OLR) as a Powerful Indicator of an Approaching Earthquake 2.4.1 Main Techniques for Measurement and Identification of ETA 2.4.2 Physical Nature of ETA 2.4.3 ETA Assessment Based on OLR Data 2.4.4 Revealing Pre-earthquake ETA in the Atmosphere Associated with 2015 M7.8 and M7.3 Events in Nepal 2.5 Jet-Stream Change as an Indicator of Earthquake Processes 2.6 Reversed Cascade Process as a Possible Mechanism of Anomalous OLR Spots Formation References 3 Earthquake Precursors in the Ionosphere 3.1 Ionization, Atmospheric Electricity, and Possible Mechanisms of Anomalous Electric Field Generation 3.1.1 Electrode Effect 3.1.2 Electric Field Reversals 3.1.3 Anomalous Fluctuations of Electric Field 3.1.4 Active Experiments 3.1.5 Cloud-Like Charge Separation and Possibility of Pulsed Emission from Aerosol Layers 3.2 The Global Electric Circuit 3.3 Planetary Boundary Layer and Atmospheric Electricity 3.3.1 Local Time Dependence of Ionospheric Precursors 3.3.2 Possible Thermal Instability in the Boundary Layer 3.3.3 Conductivity Changes in the Boundary Layer and the Lower Troposphere Under the Action of Ionization 3.4 Electric Field Penetration into the Ionosphere 3.4.1 Penetration of an Electric Field of Seismic Origin into the Ionosphere 3.4.2 Calculation of the Electric Field in the Ionosphere (Cylindrical Source) 3.4.3 Effects of the Anomalous Electric Field in the E-Region 3.4.4 Formation of Sporadic Layers in the E-Region 3.4.5 Electric Field Effects in the F-Region 3.4.6 Calculation of the Electric Field for Elongated Sources 3.5 Ionospheric Potential and its Effects in Equatorial Anomaly 3.5.1 Ion Mobility and Air Conductivity 3.5.2 Positive and Negative Conductivity Changes in the Troposphere and the Global Electric Circuit 3.5.3 Mechanism of Ionospheric Anomaly Formation in Low-Latitude Ionosphere Due to Changes of Air Conductivity in the Boundary Layer 3.6 Magnetospheric Effects 3.6.1 Seismically Induced Particle Precipitation From the Magnetosphere 3.6.2 From the Magnetosphere to D-Region 3.7 The Physical Mechanism of Seismo-ionospheric Coupling: A Never-Ending Road References 4 Multiparameter Approach and LAIC Validation 4.1 Synergy of Atmospheric and Ionospheric Effects Before Earthquakes 4.1.1 The LAIC Model as a Complex System 4.1.2 Trying to Catch the “Arrow of Time”: Integrated Parameters 4.2 Some Major Seismic Events and Registered Pre-earthquake Atmospheric Signatures 4.2.1 M6.8, 16 July 2007, Niigata Chuetsu-Oki, Japan 4.2.2 M7.6, 8 October 2005, Near the Coast of Central Peru 4.2.3 M7.9, 12 May 2008, Eastern Sichuan, China 4.2.4 M6.3, 6 April 2009, L’Aquila, Italy 4.2.5 M7.1, 12 January 2010, Haiti 4.2.6 M6, 21 February 2011, Christchurch, NZ 4.2.7 M9, 11 March 2011, Near the East Coast of Honshu, Japan 4.2.8 M7.7, 24 September 2013, Balochistan, Pakistan 4.2.9 M8.2, 1 April 2014, Iquique, Chile 4.2.10 M7.8, 25 April 2015, Nepal, M7.3 of 12 May 2015, Nepal 4.3 Identification Technique for Short-Term Precursors 4.3.1 Methods for Detection of Atmospheric/ionospheric Anomalies 4.3.2 The Machine-Learning Approach to Precursor Identification 4.3.3 The Integrated Approach to Precursor Identification 4.4 Statistical Studies of Pre-earthquake Atmospheric and Ionospheric Anomalies 4.4.1 Thermal Radiation Anomalies (TRA) 4.4.2 Seismo-Ionospheric Anomalies 4.4.3 Verification of Ionospheric Precursory Phenomena with DEMETER References 5 Future Developments 5.1 Naturally Stimulated Seismic Activity 5.1.1 Mechanical Triggers 5.1.2 Electromagnetic Triggers 5.1.3 Gravitational Triggering 5.1.4 Solar and Geomagnetic Activity: Magnetic Storms and Earthquakes 5.1.5 Induced and Anthropogenic Earthquakes 5.2 Nuclear Tests and Seismicity 5.3 General Concluding Remarks References