ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Dynamical systems and numerical analysis

دانلود کتاب سیستم های دینامیکی و تحلیل عددی

Dynamical systems and numerical analysis

مشخصات کتاب

Dynamical systems and numerical analysis

ویرایش: 1 
نویسندگان: ,   
سری: Cambridge monographs on applied and computational mathematics 2 
ISBN (شابک) : 0521496721, 9780521496728 
ناشر: Cambridge University Press 
سال نشر: 1998 
تعداد صفحات: 709 
زبان: English 
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 4 مگابایت 

قیمت کتاب (تومان) : 52,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Dynamical systems and numerical analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سیستم های دینامیکی و تحلیل عددی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب سیستم های دینامیکی و تحلیل عددی

این کتاب مطالعه سیستم های دینامیکی و حل عددی معادلات دیفرانسیل را متحد می کند. سه فصل اول شامل عناصر تئوری سیستم های دینامیکی و حل عددی مسائل مقدار اولیه است. در فصل های باقی مانده، روش های عددی به عنوان سیستم های دینامیکی فرموله شده و خواص همگرایی و پایداری روش ها مورد بررسی قرار می گیرد. موضوعات مورد مطالعه شامل پایداری روش‌های عددی برای سیستم‌های انقباضی، اتلاف، گرادیان و همیلتونی همراه با خواص هم‌گرایی تعادل‌ها، راه‌حل‌های تناوبی و جاذبه‌های strage تحت تقریب عددی است. این کتاب ابزار ارزشمندی برای دانشجویان تحصیلات تکمیلی و محققین در زمینه های تحلیل عددی و سیستم های دینامیکی خواهد بود.


توضیحاتی درمورد کتاب به خارجی

This book unites the study of dynamical systems and numerical solution of differential equations. The first three chapters contain the elements of the theory of dynamical systems and the numerical solution of initial-value problems. In the remaining chapters, numerical methods are formulted as dynamical systems and the convergence and stability properties of the methods are examined. Topics studied include the stability of numerical methods for contractive, dissipative, gradient and Hamiltonian systems together with the convergence properties of equilibria, periodic solutions and strage attractors under numerical approximation. This book will be an invaluable tool for graduate students and researchers in the fields of numerical analysis and dynamical systems



فهرست مطالب

Stuart A.M., Humphries A. R.Dynamical Systems and Numerical Analysis.Cambridge Monographs on Applied and Computational Mathematics vol.2(CUP,1998)(ISBN 0521645638)(600dpi)(709p) 5......Page 5
Copyright 6......Page 6
Contents vii 8......Page 8
Preface xi 12......Page 12
Acknowledgements xxii 23......Page 23
1.1 Introduction 1 24......Page 24
1.2 Limit Sets 12 35......Page 35
1.3 Stability 21 44......Page 44
1.4 Bifurcation 33 56......Page 56
1.5 Period-Doubling and Chaos 45 68......Page 68
1.6 Invariant Manifolds 53 76......Page 76
1.7 Attractors and Related Concepts 71 94......Page 94
1.8 Global Properties 79 102......Page 102
1.9 Area-Preserving and Symplectic Maps 89 112......Page 112
1.10 References 98 121......Page 121
2.1 Introduction 100 123......Page 123
2.2 Limit Sets 113 136......Page 136
2.3 Stability 126 149......Page 149
2.4 Bifurcation 141 164......Page 164
2.5 The Lorenz Equations and Chaos 145 168......Page 168
2.6 Invariant Manifolds 153 176......Page 176
2.7 Attractors and Related Concepts 166 189......Page 189
2.8 Global Properties 172 195......Page 195
2.9 Hamiltonian and Conservative Systems 200 223......Page 223
2.10 References 209 232......Page 232
3.1 Introduction 212 235......Page 235
3.2 Runge-Kutta Methods 214 237......Page 237
3.2.1 Examples of Runge-Kutta methods 215 238......Page 238
3.2.2 Reducible Runge-Kutta Methods 217 240......Page 240
3.3.1 Linear Multistep Methods 221 244......Page 244
3.3.2 One-Leg Methods 225 248......Page 248
3.4 Order and Convergence of Runge-Kutta Methods 228 251......Page 251
3.4.1 Linear Order 231 254......Page 254
3.4.2 Nonlinear Order 234 258......Page 258
3.4.3 Construction of Runge-Kutta Methods 236 259......Page 259
3.4.4 Convergence of Runge-Kutta Methods 238 261......Page 261
3.5 Order and Convergence of Linear Multistep Methods 242 265......Page 265
3.5.1 Order of Linear Multistep Methods 243 266......Page 266
3.5.2 Zero-Stability of Linear Multistep Methods 245 268......Page 268
3.5.3 Construction of Linear Multistep Methods 246 269......Page 269
3.5.4 Convergence of Linear Multistep Methods 249 272......Page 272
3.6.1 Stiff Linear Problems 254 277......Page 277
3.6.2 Stiff Nonlinear Problems 263 286......Page 286
3.7 References 267 290......Page 290
4.1 Introduction 269 292......Page 292
4.2 Runge-Kutta Methods: Lipschitz Conditions 273 296......Page 296
4.3 Multistep Methods: Lipschitz Conditions 283 306......Page 306
4.4.1 The Framework 289 312......Page 312
4.4.2 Linear Decay 293 316......Page 316
4.4.3 One-sided Lipschitz Conditions 296 319......Page 319
4.4.4 Dissipative Systems 304 327......Page 327
4.4.5 Generalised Dissipative Systems 308 331......Page 331
4.4.6 Gradient Systems 310 333......Page 333
4.5 Multistep Methods: Structural Assumptions 313 336......Page 336
4.5.1 Linear Decay 314 337......Page 337
4.5.2 One-sided Lipschitz conditions 315 338......Page 338
4.5.4 Gradient Systems 317 340......Page 340
4.6 Approximation Properties of Runge-Kutta Methods 318 341......Page 341
4.7 Approximation Properties of Multistep Methods 327 350......Page 350
4.8 Relationship Between Multistep and One-Step Methods 331 354......Page 354
4.9 References 351 374......Page 374
5.1 Introduction 355 378......Page 378
5.2 Linear Problems 360 383......Page 383
5.2.1 Runge-Kutta Methods 361 384......Page 384
5.2.2 Linear Multistep Methods 367 390......Page 390
5.3 Spurious Solutions 372 395......Page 395
5.3.1 Runge-Kutta Methods 374 397......Page 397
5.3.2 Linear Multistep Methods 379 402......Page 402
5.4 Contractive and Related Systems 382 405......Page 405
5.4.1 Runge-Kutta Methods 383 406......Page 406
5.4.2 Linear Multistep Methods 392 415......Page 415
5.5 Dissipative Systems 398 421......Page 421
5.5.1 Runge-Kutta Methods 399 422......Page 422
5.5.2 Linear Multistep Methods 409 432......Page 432
5.6 Gradient Systems 415 438......Page 438
5.6.1 Theta Methods 416 439......Page 439
5.6.2 Multistep Backward Differentiation Methods 419 442......Page 442
5.7 References 425 448......Page 448
6.1 Introduction 428 451......Page 451
6.2 Orbits 431 454......Page 454
6.3 Equilibrium Points 438 461......Page 461
6.4 Unstable Manifolds 447 470......Page 470
6.5 Phase Portraits 462 485......Page 485
6.6 Periodic and Quasi-Periodic Solutions 475 495......Page 495
6.7 References 494 517......Page 517
7.1 Introduction 497 520......Page 520
7.2.1 Nonautonomous Backward Error Analysis 502 525......Page 525
7.2.2 Autonomous Backward Error Analysis and Modified Equations 506 529......Page 529
7.3 Preservation of Structure on a Compact Set I 510 533......Page 533
7.3.1 Dissipative and Contractive Systems 511 534......Page 534
7.3.2 Gradient Systems 515 538......Page 538
7.4 Preservation of Structure on a Compact Set II 519 542......Page 542
7.4.1 Dissipative and Contractive Systems 520 543......Page 543
7.4.2 Gradient Systems 522 545......Page 545
7.5 Uniformly Asymptotically Stable Sets 530 553......Page 553
7.6 Upper Semicontinuity of Attractors 541 564......Page 564
7.7 Lower Semicontinuity of Attractors 550 573......Page 573
7.8 Invariant Sets and Attractors 562 585......Page 585
7.9 References 571 594......Page 594
8.1 Introduction 574 597......Page 597
8.2 Approximation of Linear Hamiltonian Equations 586 609......Page 609
8.3 Symplectic Runge-Kutta Methods 591 614......Page 614
8.4 Symplectic Multistep Methods 600 623......Page 623
8.5 Hamiltonian Conserving Methods 606 629......Page 629
8.5.1 Projected Methods 607 630......Page 630
8.5.2 Automatic Conserving Methods 611 634......Page 634
8.5.3 Stabilization Procedures 614 637......Page 637
8.6 Backward Error Analysis 617 640......Page 640
8.7 Forward Error Analysis for Periodic Problems 627 650......Page 650
8.8 Conservation Properties 638 661......Page 661
8.9 References 641 664......Page 664
A Notation 645 668......Page 668
B Linear Algebra 647 670......Page 670
C Fixed Point Theorems 656 679......Page 679
Bibliography 660 683......Page 683
Index 680 703......Page 703
cover ......Page 1




نظرات کاربران