دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Li Longbiao
سری:
ISBN (شابک) : 0081030215, 9780081030219
ناشر: Woodhead Publishing
سال نشر: 2020
تعداد صفحات: 475
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب Durability of Ceramic-Matrix Composites (Woodhead Publishing Series in Composites Science and Engineering) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دوام کامپوزیت های سرامیکی ماتریس (مجموعه انتشارات Woodhead در علوم و مهندسی کامپوزیت) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
دوام کامپوزیت های سرامیکی ماتریکس آخرین اطلاعات در مورد این مواد ساختاری با دمای بالا و مزایای برجسته آنها نسبت به مواد معمولی تر، از جمله استحکام ویژه بالا، مدول ویژه بالا، مقاومت در برابر دمای بالا و پایداری حرارتی خوب ماهیت حیاتی کاربرد این مواد پیشرفته، داشتن درک کامل از خصوصیات آنها را ضروری می سازد.
این کتاب به صراحت بر دوام CMC ها تمرکز دارد و برای دانشمندان و مهندسان مواد که با شبیه سازی پاسخ دوام و خستگی کامپوزیت های زمینه سرامیکی سر و کار دارند بسیار ارزشمند خواهد بود.
Durability of Ceramic-Matrix Composites presents the latest information on these high-temperature structural materials and their outstanding advantages over more conventional materials, including their high specific strength, high specific modulus, high temperature resistance and good thermal stability. The critical nature of the application of these advanced materials makes it necessary to have a complete understanding of their characterization.
This book focuses explicitly on the durability of CMCs and will be extremely valuable for materials scientists and engineers who are dealing with the simulation of durability response and fatigue of ceramic matrix composites.
Cover Durability of Ceramic-Matrix Composites Copyright Contents Preface Acknowledgments 1 Introduction and overview of ceramic-matrix composites 1.1 Introduction 1.2 Application of ceramic-matrix composites 1.2.1 Reinforced fibers 1.2.2 Interface phase 1.2.3 Ceramic matrix 1.2.4 Application in aero engines 1.2.5 France 1.2.6 United States 1.2.6.1 High-performance turbine engine technology project Joint technology demonstration engine Advanced turbine engine gas generator Joint turbine advanced gas generator Joint expendable turbine engine concept demonstrator 1.2.6.2 Ultraefficient engine technology Program 1.2.6.3 Application on the F414 aero engine 1.2.6.4 Federal Aviation Administration continuous lower energy, emissions, and noise program in the United States 1.2.7 Japan 1.2.8 Application in rocket engines 1.2.9 Application in Scramjet Engine 1.2.10 Application in thermal protection systems 1.3 Overview of tensile behavior of ceramic-matrix composites 1.3.1 Experimental observation 1.3.1.1 Unidirectional ceramic-matrix composites 1.3.1.2 Cross-Ply Ceramic-Matrix Composites 1.3.1.3 2D ceramic-matrix composites 1.3.1.4 2.5D ceramic-matrix composites 1.3.1.5 3D ceramic-matrix composites 1.3.2 Theoretical Analysis 1.3.2.1 Initiation matrix cracking 1.3.2.2 Matrix multicracking evolution 1.3.2.3 Fibers Failure 1.3.2.4 Stress–strain curve 1.4 Overview of fatigue behavior of ceramic-matrix composites 1.4.1 Fatigue hysteresis behavior 1.4.1.1 Experimental observation 1.4.1.2 Theoretical analysis 1.4.2 Interface wear behavior 1.4.2.1 Experimental observation 1.4.2.2 Theoretical analysis 1.4.3 Fibers strength degradation 1.4.4 Oxidation embrittlement 1.4.5 Modulus degradation 1.4.6 The effect of loading frequency 1.4.7 The Effect of Stress Ratio 1.5 Overview of lifetime prediction methods of ceramic-matrix composites 1.5.1 S–N curve 1.5.1.1 Unidirectional ceramic-matrix composites 1.5.1.2 Cross-ply ceramic-matrix composites 1.5.1.3 2D ceramic-matrix composites 1.5.1.4 2.5D ceramic-matrix composites 1.5.1.5 3D ceramic-matrix composites 1.5.2 Fatigue life prediction 1.6 Conclusion References Further reading 2 Matrix cracking of ceramic–matrix composites 2.1 Introduction 2.2 First-matrix cracking in an oxidation environment at elevated temperature 2.2.1 Stress analysis 2.2.1.1 Downstream stress 2.2.1.2 Upstream stress 2.2.2 Interface debonding 2.2.3 Matrix cracking stress 2.2.4 Results and discussion 2.2.4.1 Effect of fiber-volume fraction on time-dependent fiber–matrix interface debonding and first-matrix cracking stress 2.2.4.2 Effect of fiber–matrix interface debonded energy on time-dependent fiber–matrix interface debonding and first-matri... 2.2.4.3 Effect of fiber–matrix interface shear stress on the time-dependent fiber–matrix interface debonding and first-matr... 2.2.4.4 Effect of oxidation temperature on time-dependent fiber–matrix interface debonding and first-matrix cracking stress 2.2.5 Experimental comparisons 2.3 Matrix multicracking evolution considering fibers poisson contraction 2.3.1 Stress analysis 2.3.2 Interface debonding 2.3.3 Multiple matrix cracking 2.3.4 Results and discussion 2.3.4.1 Effect of fiber–matrix interface frictional coefficient on fiber–matrix interface debonding and matrix multicrackin... 2.3.4.2 Effect of fibers poisson ratio on fiber–matrix interface debonding and matrix multicracking evolution 2.3.4.3 Effect of fiber-volume fraction on fiber–matrix interface debonding and matrix multicracking evolution 2.3.4.4 Effect of applied cycle number on fiber–matrix interface shear stress and matrix axial stress distribution 2.3.5 Experimental comparisons 2.3.5.1 Unidirectional SiC/CAS composite 2.3.5.2 Unidirectional SiC/CAS-II composite 2.3.5.3 Unidirectional SiC/borosilicate composite 2.4 Matrix multicracking evolution considering interface oxidation 2.4.1 Stress analysis 2.4.2 Interface debonding 2.4.3 Multiple matrix cracking 2.4.4 Results and discussion 2.4.4.1 Effect of fiber volume fraction on fiber–matrix interface debonding and matrix cracking evolution 2.4.4.2 Effect of fiber–matrix interface shear stress on interface debonding and matrix cracking evolution 2.4.4.3 Effect of fiber–matrix interface debonded energy on fiber–matrix interface debonding and matrix cracking evolution 2.4.4.4 Effect of oxidation temperature on fiber–matrix interface debonding and matrix cracking evolution 2.4.4.5 Effect of oxidation time on fiber–matrix interface debonding and matrix cracking evolution 2.4.4.6 Comparisons of matrix cracking evolution with and without oxidation 2.4.5 Experimental comparison 2.4.5.1 Unidirectional SiC/CAS composite 2.4.5.2 Unidirectional SiC/borosilicate composite 2.4.5.3 Mini–SiC/SiC composite 2.5 Matrix multicracking evolution of cross-ply ceramic–matrix composites 2.5.1 Stress analysis 2.5.1.1 Undamaged state 2.5.1.2 Matrix cracking mode 1 2.5.1.3 Matrix cracking mode 2 2.5.1.4 Matrix cracking mode 3 2.5.1.5 Matrix cracking mode 5 2.5.2 Energy balance approach 2.5.2.1 Mode 1 cracking evolution 2.5.2.2 Mode 2 cracking evolution 2.5.2.3 Mode 3 cracking evolution 2.5.2.4 Mode 3 cracking occurring between two mode 1 cracks 2.5.2.5 Mode 5 cracking occurring between two mode 1 cracks 2.5.3 Results and discussion 2.5.3.1 Mode 1 cracking evolution 2.5.3.2 Mode 2 cracking evolution 2.5.3.3 Mode 3 cracking evolution 2.5.3.4 New cracking mode 3 and mode 5 occurring between two existing mode 1 transverse cracks 2.6 Conclusion References Further reading 3 Tensile strength of ceramic-matrix composites 3.1 Introduction 3.2 Tensile strength under multiple fatigue loading 3.2.1 Stress analysis 3.2.2 Damage models 3.2.2.1 Matrix multicracking evolution 3.2.2.2 Fiber–matrix interface debonding 3.2.2.3 Interface wear 3.2.2.4 Fibers failure 3.2.3 Results and discussion 3.2.3.1 Single matrix cracking 3.2.3.2 Matrix multicracking 3.2.4 Experimental comparisons 3.3 Tensile strength under cyclic loading at elevated temperatures in oxidative environments 3.3.1 Residual strength model 3.3.2 Results and discussion 3.3.2.1 Effect of peak stress on the composite residual strength and fibers fracture 3.3.2.2 Effect of fiber–matrix interface shear stress on composite residual strength and fibers fracture 3.3.2.3 Effect of fiber Weibull modulus on composite residual strength and fibers fracture 3.3.2.4 Effect of fiber strength on composite residual strength and fibers fracture 3.3.2.5 Effect of testing temperature on composite residual strength and fibers fracture 3.3.3 Experimental comparisons 3.3.3.1 SiC/[Si–N–C] composites at room and elevated temperatures 3.3.3.2 SiC/SiC composites at elevated temperatures 3.3.3.3 Nextel 720/Alumina composites at elevated temperatures 3.4 Conclusion References Further reading 4 Interface debonding and sliding of ceramic-matrix composites 4.1 Introduction 4.2 Interface debonding and sliding under different loading sequences 4.2.1 Stress analysis 4.2.1.1 Initial loading 4.2.1.2 Unloading 4.2.1.3 Reloading 4.2.2 Interface slip lengths 4.2.2.1 Interface debonding length 4.2.2.2 Interface counter-slip length 4.2.2.3 Interface new-slip length 4.2.3 Results and discussion 4.2.3.1 Effect of loading sequence on the fiber–matrix interface debonding 4.2.3.2 Effect of applied cycle number on fiber–matrix interface debonding Loading sequence of Case 2 Loading sequence of Case 3 Loading sequence of Case 4 Loading sequence of Case 5 4.2.3.3 Effect of peak stress level on fiber–matrix interface debonding Loading sequence of Case 2 Loading sequence of Case 3 Loading sequence of Case 4 Loading sequence of Case 5 4.2.3.4 Effect of arbitrary loading sequence on fatigue hysteresis and fiber–matrix interface sliding 4.2.3.5 Effect of fiber volume fraction on fatigue hysteresis and fiber–matrix interface sliding 4.2.3.6 Effect of matrix crack spacing on the fatigue hysteresis loops and fiber–matrix interface sliding 4.2.3.7 Effect of interface properties on the fatigue hysteresis and fiber–matrix interface sliding 4.2.3.8 Effect of fiber–matrix interface wear on the fatigue hysteresis loops and fiber–matrix interface sliding 4.2.4 Experimental comparisons 4.2.4.1 Unidirectional C/SiC composite First stage fatigue peak stress Second stage fatigue peak stress Third stage fatigue peak stress 4.2.4.2 Unidirectional SiC/calcium alumina silicate-II composite 4.2.4.3 Cross-ply C/SiC composite 4.3 Hysteresis dissipated energy under multiple loading sequences 4.3.1 Hysteresis theories 4.3.2 Results and discussion 4.3.2.1 Effect of fiber-volume fraction on multiple loading fiber–matrix interface sliding 4.3.2.2 Effect of matrix crack spacing on multiple loading fiber–matrix interface sliding 4.3.2.3 Effect of low-peak stress level on multiple loading fiber–matrix interface sliding 4.3.2.4 Effect of high-peak stress level on multiple loading fiber–matrix interface sliding 4.3.2.5 Effect of fatigue stress range on multiple loading fiber–matrix interface sliding 4.3.2.6 Comparisons between single and multiple loading stress levels on fiber–matrix interface sliding 4.3.2.7 Comparisons between different loading sequences on fiber–matrix interface sliding 4.3.3 Experimental comparisons 4.3.3.1 C/SiC composite 4.3.3.2 SiC/SiC composite 4.4 Conclusion References Further reading 5 Damage evolution of ceramic-matrix composites under cyclic fatigue loading 5.1 Introduction 5.2 Hysteresis-based damage parameters 5.3 Tensile loading–unloading damage evolution 5.3.1 Results and discussion 5.3.1.1 Effect of fiber-volume fraction on hysteresis loops and hysteresis-based damage parameters 5.3.1.2 Effect of matrix cracking space on hysteresis loops and hysteresis-based damage parameters 5.3.1.3 Effect of fiber–matrix interface shear stress on hysteresis loops and hysteresis-based damage parameters 5.3.1.4 Effect of fiber–matrix interface debonded energy on hysteresis loops and hysteresis-based damage parameters 5.3.1.5 Effect of fibers failure on hysteresis loops and hysteresis-based damage parameters 5.3.2 Experimental comparisons 5.3.2.1 Unidirectional C/SiC composite 5.3.2.2 Cross-ply C/SiC composite 5.3.2.3 2D C/SiC composite 5.3.2.4 2.5D C/SiC composite 5.3.2.5 3D braided C/SiC composite 5.3.2.6 3D needled C/SiC composite 5.4 Cyclic fatigue damage evolution 5.4.1 Results and discussion 5.4.1.1 Effect of fiber volume fraction on fiber–matrix interface debonding and hysteresis-based damage parameters 5.4.1.2 Effect of fatigue peak stress on fiber–matrix interface debonding and hysteresis-based damage parameters 5.4.1.3 Effect of fatigue stress ratio on hysteresis-based damage parameters 5.4.1.4 Effect of matrix crack spacing on fiber–matrix interface debonding and hysteresis-based damage parameters 5.4.1.5 Effect of matrix crack mode on fiber–matrix interface debonding and hysteresis-based damage parameter 5.4.1.6 Effect of woven structure on hysteresis-based damage parameters 5.4.2 Experimental comparisons 5.4.2.1 Unidirectional ceramic-matrix composites SiC/calcium alumina silicate composite at room temperature SiC/calcium alumina silicate-II composite at room temperature SiC/1723 composite at room temperature C/SiC composite at room temperature C/SiC composite at elevated temperature 5.4.2.2 Cross-ply ceramic-matrix composites SiC/calcium alumina silicate composite at room temperature SiC/calcium alumina silicate composite at 700°C in air atmosphere SiC/calcium alumina silicate composite at 850°C in air atmosphere C/SiC composite at room temperature C/SiC composite at 800°C in air atmosphere SiC/MAS-L composite at 800°C and 1000°C in inert atmosphere 5.4.2.3 2D ceramic-matrix composites SiC/SiC composite at 600°C, 800°C, and 1000°C in inert condition SiC/SiC composite at 1000°C in air and in steam atmosphere SiC/SiC composite at 1200°C in air and steam atmospheres SiC/SiC composite at 1300°C in air atmosphere 5.4.2.4 3D braided ceramic-matrix composites 5.5 Static fatigue damage evolution 5.5.1 Results and discussion 5.5.1.1 Effect of fatigue peak stress on static fatigue damage evolution 5.5.1.2 Effect of matrix crack spacing on static fatigue damage evolution 5.5.1.3 Effect of fiber volume fraction on static fatigue damage evolution 5.5.1.4 Effect of oxidation temperature on static fatigue damage evolution 5.5.2 Experimental comparisons 5.6 Conclusion References Further reading 6 Fatigue life prediction of ceramic-matrix composites based on hysteresis dissipated energy 6.1 Introduction 6.2 Theoretical analysis 6.3 Results and discussions 6.3.1 Effects of fatigue peak stress on fiber–matrix interface debonding, HDE, and HDE-based damage parameters 6.3.2 Effects of fatigue stress ratio on HDE and HDE-based damage parameters 6.3.3 Effects of matrix crack spacing on fiber–matrix interface debonding, HDE, and HDE-based damage parameters 6.3.4 Effects of fiber volume fraction on fatigue life, fiber–matrix interface debonding, HDE, and HDE-based damage parameters 6.4 Experimental comparisons 6.4.1 Unidirectional ceramic-matrix composites 6.4.1.1 SiC/CAS composite 6.4.1.2 SiC/1723 composite 6.4.2 Cross-ply ceramic-matrix composites 6.4.2.1 SiC/MAS at 566°C in air atmosphere 6.4.2.2 SiC/MAS composite at 1093°C in air atmosphere 6.4.3 2D ceramic-matrix composites 6.4.3.1 C/SiC composites at room temperature 6.4.3.2 SiC/SiC composites at room temperature 6.4.3.3 C/SiC composites at elevated temperature 6.4.3.4 SiC/SiC composites at elevated temperatures 6.4.4 2.5D ceramic-matrix composites 6.4.5 3D ceramic-matrix composites 6.4.5.1 C/SiC at room and elevated temperatures 6.4.5.2 SiC/SiC composite at elevated temperature 6.5 Conclusion References Further reading Index Back Cover