ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Drug Delivery with Targeted Nanoparticles: In Vitro and In Vivo Evaluation Methods

دانلود کتاب تحویل دارو با نانوذرات هدفمند: روش‌های ارزیابی In Vitro و In Vivo

Drug Delivery with Targeted Nanoparticles: In Vitro and In Vivo Evaluation Methods

مشخصات کتاب

Drug Delivery with Targeted Nanoparticles: In Vitro and In Vivo Evaluation Methods

ویرایش: [1 ed.] 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9814877751, 9789814877756 
ناشر: Jenny Stanford Publishing 
سال نشر: 2021 
تعداد صفحات: 790
[789] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 39 Mb 

قیمت کتاب (تومان) : 49,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب Drug Delivery with Targeted Nanoparticles: In Vitro and In Vivo Evaluation Methods به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تحویل دارو با نانوذرات هدفمند: روش‌های ارزیابی In Vitro و In Vivo نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تحویل دارو با نانوذرات هدفمند: روش‌های ارزیابی In Vitro و In Vivo



فناوری نانو این پتانسیل را دارد که هر بخش از زندگی ما را تغییر دهد. امروزه محصولات مبتنی بر فناوری نانو در بسیاری از زمینه ها مورد استفاده قرار می گیرند و یکی از مهم ترین حوزه ها دارورسانی است. سیستم‌های دارورسانی نانوذراتی نه تنها تحویل کنترل‌شده داروها و بهبود حلالیت دارو را فراهم می‌کنند، بلکه کارایی دارو را بهبود می‌بخشند و عوارض جانبی را از طریق مکانیسم‌های هدف‌گیری کاهش می‌دهند. با این حال، در مقایسه با سیستم‌های مرسوم دارورسانی، تعداد کمی از محصولات مبتنی بر نانوذرات در بازار وجود دارد و تقریباً همه آنها سیستم‌های غیر هدفمند یا فقط هدف‌دار غیرفعال هستند. علاوه بر این، به دست آوردن سیستم های نانوذرات هدف بسیار پیچیده است و به مکانیسم های ارزیابی زیادی نیاز دارد. این کتاب تولید، خصوصیات، تنظیم و سیستم‌های نانوذرات هدف‌گذاری شده در حال حاضر را در چارچوبی وسیع مورد بحث قرار می‌دهد. این یک نمای کلی از مشخصات نانوذرات هدف (i) در شرایط آزمایشگاهی، مانند اندازه ذرات، پایداری، چگالی لیگاند، و نوع ارائه می‌کند. (ب) رفتار in vivo برای مناطق مختلف هدف، مانند تومور، مغز، و واژن. و (iii) پیشرفت‌های فعلی در این زمینه، از جمله آزمایش‌های بالینی و فرآیندهای تنظیمی.


توضیحاتی درمورد کتاب به خارجی

Nanotechnology has the potential to change every part of our lives. Today, nanotechnology-based products are used in many areas, and one of the most important areas is drug delivery. Nanoparticulate drug delivery systems not only provide controlled delivery of drugs and improved drug solubility but also improve drug efficiency and reduce side effects via targeting mechanisms. However, compared to conventional drug delivery systems, few nanoparticle-based products are on the market and almost all are nontargeted or only passively targeted systems. In addition, obtaining targeted nanoparticle systems is quite complex and requires many evaluation mechanisms. This book discusses the production, characterization, regulation, and currently marketed targeted nanoparticle systems in a broad framework. It provides an overview of targeted nanoparticles’ (i) in vitro characterization, such as particle size, stability, ligand density, and type; (ii) in vivo behavior for different targeting areas, such as tumor, brain, and vagina; and (iii) current advances in this field, including clinical trials and regulation processes.



فهرست مطالب

Cover
Title Page
Copyright Page
Table of Contents
Preface
Chapter 1: Particle Size Determination of Targeted Nanoparticles
	1.1: Introduction
	1.2: Nanotechnology
	1.3: Nanoparticles
	1.4: Targeted Nanoparticles
	1.5: Particle Size Distribution
	1.6: Particle Size Determination Methods
		1.6.1: Photon Correlation Spectroscopy/Dynamic Light Scattering
		1.6.2: Laser Light Diffraction
		1.6.3: X-Ray Diffraction Peak Broadening Analysis
		1.6.4: Scanning Electron Microscopy
		1.6.5: Transmission Electron Microscopy
		1.6.6: Atomic Force Microscopy
		1.6.7: Other Methods
	1.7: Conclusion
Chapter 2: Zeta Potential Determination of Targeted Nanoparticles
	2.1: What Is Zeta Potential?
	2.2: Determination Methods
		2.2.1: Measuring the ZP by Electrophoresis
		2.2.2: Tunable Resistive Pulse Sensing
	2.3: Characteristics of the ZP
		2.3.1: pH
		2.3.2: Ionic Strength
		2.3.3: Size Effect
			2.3.3.1: Present charge
			2.3.3.2: Conductivity
			2.3.3.3: Concentration
			2.3.3.4: Dilution
			2.3.3.5: Stability
			2.3.3.6: Reproducibility
			2.3.3.7: Population
			2.3.3.8: Pores and surface coating
			2.3.3.9: Size
			2.3.3.10: Temperature
	2.4: Golden Standards and General Protocol for ZP Measurement
		2.4.1: Reagents and Dispersants
		2.4.2: Cleaning of the Zeta Cell or Cuvette
		2.4.3: Equipment
		2.4.4: Sample Preparation
		2.4.5: Colored and Fluorescent Samples
		2.4.6: Using Buffers with Metallic Ions
		2.4.7: Measuring the ZP in a Cell Culture Medium
	2.5: Effect of the ZP on Targeting
	2.6 Conclusion
Chapter 3: Stability of Targeted Nanoparticles
	3.1: Introduction
	3.2: Significance of Stability Assessment
	3.3: Physical Stability
		3.3.1: Particle Size and Size Distribution
		3.3.2: Structure and Morphology
		3.3.3: Surface Chemistry and Surface Charge
		3.3.4: Particle Growth via Aggregation or Agglomeration
		3.3.5: Reconstitution Properties
	3.4: Chemical Stability
		3.4.1: Amount of Drug and Degradation
		3.4.2: Drug Release
		3.4.3: Drug Leakage
		3.4.4: Light Stability
		3.4.5: Biological Activity
	3.5: Conclusions
Chapter 4: Impact of PEGylation on Targeted Nanoparticulate Delivery
	4.1: Introduction
	4.2: Passive Targeting
	4.3: Active Targeting
	4.4: Brain Targeting
	4.5: Tumor Targeting
Chapter 5: Ligands and Receptors for Targeted Delivery of Nanoparticles: Recent Updates and Challenges
	5.1: Introduction
	5.2: Approaches to Targeted Drug Delivery
		5.2.1: Passive Targeting
		5.2.2: Active Targeting
	5.3: Receptors for Targeted Drug Delivery and Challenges
		5.3.1: Receptor-Specific Challenges
			5.3.1.1: Identification of receptors
			5.3.1.2: Expression characteristics of receptors
			5.3.1.3: Receptor accessibility
			5.3.1.4: Cellular uptake of receptors
	5.4: Ligand-Based Targeted Drug Delivery: Opportunities and Challenges
		5.4.1: Selection of Ligand
		5.4.2: Ligand Size
		5.4.3: Conjugation of a Targeting Ligand with a Drug/Nanocarrier
		5.4.4: Ligand Immunogenicity
	5.5: Types and in vivo Fate of Targeted Nanoparticles
	5.6: Future Prospects and Conclusion
Chapter 6: Characterization of Biological Molecule–Loaded Nanostructures Using Circular Dichroism and Fourier Transform Infrared Spectroscopy
	6.1: Introduction
	6.2: Circular Dichroism
		6.2.1: Sample Preparation and Measurement
		6.2.2: Drug-Loaded Nanoparticle Characterization by CD
	6.3: Fourier Transform Infrared Spectroscopy
		6.3.1: Sample Preparation and Measurement
		6.3.2: Application of FTIR Spectroscopy for Drug-Loaded Nanoparticle Characterization
	6.4: Conclusion
Chapter 7: Evaluation of Stimuli-Sensitive Nanoparticles in vitro
	7.1: Introduction
	7.2: Stimuli-Responsive Nanocarriers
	7.3: Stimuli-Responsive Drug Release
		7.3.1: Internal Stimuli
			7.3.1.1: pH stimuli
			7.3.1.2: Redox stimuli
			7.3.1.3: Enzyme stimuli
		7.3.2: External Stimuli
			7.3.2.1: Light stimuli
			7.3.2.2: Ultrasound stimuli
			7.3.2.3: Thermal stimuli
			7.3.2.4: Magnetic stimuli
		7.3.3: Multistimulation
	7.4: Evaluation of Stimuli Response in Cell Culture
		7.4.1: Endolysosomal Escape
		7.4.2: Cytotoxicity
	7.5: Conclusion
Chapter 8: Analytical Techniques for Characterization of Nanodrugs
	8.1: Introduction
	8.2: Analytical Characterization of Nanodrugs
		8.2.1: Drug Encapsulation and Loading Capacity
			8.2.1.1: Drug-loading content and drug-loading efficiency
			8.2.1.2: Drug entrapment/incorporation efficiency
		8.2.2: Techniques for Chemical Composition of Nanodrugs
			8.2.2.1: Chromatographic techniques
			8.2.2.2: Spectroscopic techniques
			8.2.2.3: Calorimetric techniques
		8.2.3: Purification Techniques of Nanodrugs
			8.2.3.1: Filtration
			8.2.3.2: Centrifugation
			8.2.3.3: Dialysis
			8.2.3.4: Diafiltration
			8.2.3.5: Size-exclusion chromatography
			8.2.3.6: Electrophoresis
	8.3: Physicochemical Characterization of Nanodrugs
		8.3.1: Size and Surface Morphology
			8.3.1.1: Dynamic light scattering
			8.3.1.2: Microscopic techniques
		8.3.2: Surface Area
		8.3.3: Surface Charge
	8.4: In vitro Drug Release Test Methods for Nanodrugs
		8.4.1: In vitro Drug Release
			8.4.1.1: Sample and separate method
			8.4.1.2: Continuous flow method
			8.4.1.3: Dialysis membrane methods
			8.4.1.4: Combination methods
	8.5: Stability of Nanodrugs
		8.5.1: Effect of Dosage Form on Stability
		8.5.2: Stability Issues Affecting Nanomaterial Properties
			8.5.2.1: Changes to particle size and size distribution
			8.5.2.2: Changes to particle morphology/shape
			8.5.2.3: Self-association
			8.5.2.4: Sedimentation/creaming
			8.5.2.5: Changes in the surface charge
			8.5.2.6: Change in the dissolution/release rate of the active ingredient
			8.5.2.7: Drug leakage from a nanomaterial carrier
			8.5.2.8: Changes in the chemical composition
			8.5.2.9: Interaction with the formulation or container closure
			8.5.2.10: Changes in the solid state
			8.5.2.11: Changes in microbial stability
		8.5.3: Pharmaceutical Stability-Testing Conditions
Chapter 9: Cytotoxicity and Biological Compatibility
	9.1: Analysis of Cell Viability
		9.1.1: Determination of Membrane Disruption as a Measure of Cell Death
		9.1.2: Mitochondrial Activity Assessment for Viability Testing
		9.1.3: Impedance-Based Viability Assays
	9.2: Assays for Cellular Uptake of Nanoparticles
	9.3: Drug Delivery Testing through Biological Barriers
		9.3.1: In vitro Modeling of the Mucosal Barriers for Drug Delivery
		9.3.2: Blood–Brain Barrier Models
Chapter 10: Cellular Uptake and Transcytosis
	10.1: Introduction
	10.2: Cellular Uptake Mechanisms and Nanocarrier Uptake
		10.2.1: Cellular Uptake Mechanisms
			10.2.1.1: Phagocytosis
			10.2.1.2: Pinocytosis
			10.2.1.3 Receptor-mediated endocytosis
		10.2.2: Cellular Internalization of Nanocarriers
			10.2.2.1: Intracellular events
		10.3: Effect of Physicochemical Properties of Nanocarriers on Cellular Uptake
			10.3.1: Effect of Size and Polydispersity
			10.3.2: Effect of Shape
			10.3.3: Effect of Surface Charge and Surface Modification
			10.3.4: Effect of Hydrophobicity
			10.3.5: Effect of Elasticity
	10.4: Evaluation of Cellular Uptake Pathways of Nanocarriers in Cell Culture
	10.5: Transcytosis of Nanoparticles across Cellular Barriers
		10.5.1: Cell Culture Models for Nanoparticle Barrier Permeability
			10.5.1.1: Caco-2 cell line
			10.5.1.2: HT-29 cell line
			10.5.1.3: MDCK cell line
			10.5.1.4: T84 cell line
			10.5.1.5: 3D cell culture models
	10.6 Conclusion
Chapter 11: Evaluation of 3D Cell Culture Models for Efficacy Determination of Anticancer Nanotherapeutics
	11.1: Introduction
	11.2: Types of 3D Cell Culture Models
		11.2.1: Scaffold-Based 3D Cell Culture Models
			11.2.1.1: Polymeric hard scaffolds
			11.2.1.2: Biological scaffolds
			11.2.1.3: Micropatterned surface microplates
		11.2.2: Scaffold-Free 3D Cell Culture Techniques
		11.2.3: Microfluidic 3D Cell Culture
	11.3: 3D Cell Culture as a Promising Tool in Anticancer Therapy Development
	11.4: Utilization of 3D Cell Culture Models in Evaluationof Nanoparticles
	11.5: Conclusion
Chapter 12: In vitro and in vivo Blood–Brain Barrier Models for the Evaluation of Drug Transport with Targeted Nanoparticles
	12.1: Introduction
		12.1.1: The Blood–Brain Barrier
		12.1.2: Transport Across the BBB
	12.2: In vitro BBB Models
		12.2.1: Monocultures
		12.2.2: Co-cultures
	12.3: In vivo BBB Models
	12.4: Conclusion
Chapter 13: Sterility Evaluation of Targeted Nanoparticles
	13.1: Definitions and the Need for Testing
	13.2: Short Review of Methodologies for Sterilization
		13.2.1: Removal of Microorganisms
		13.2.2: Removal of Endotoxins
	13.3: Tests Available to Assess Sterility and Endotoxin Contamination
		13.3.1: Cultivation of Fungal and Bacterial Organisms
		13.3.2: In vivo and In vitro Endotoxin Testing
			13.3.2.1: Rabbit pyrogen test
			13.3.2.2: LAL-based assays
			13.3.2.3: The rFC assay
			13.3.2.4: Alternative assays
	13.4: Interference of Nanomaterials in Endotoxin-Testing Systems
		13.4.1: Description of Interference of Nanomaterials with in vitro Test Systems
		13.4.2: Interference of Nanomaterials with in vitro Endotoxin Testing
			13.4.2.1: Optical interference
			13.4.2.2: Inhibition/enhancement
	13.5: Generic Protocol to Test Interference of Nanomaterials in Endotoxin Tests
		13.5.1: Test for Optical Interference
		13.5.2: Test for Inhibition/Enhancement
	13.6 Summary and Conclusion
Chapter 14: Evaluation of Pharmacokinetics and Biodistribution of Targeted Nanoparticles
	14.1: Introduction
	14.2: Factors Affecting Pharmacokinetics and Biodistribution of Nanoparticles
		14.2.1: Blood Circulation and the Reticuloendothelial System
		14.2.2: Properties of Nanoparticles
			14.2.2.1: Surface properties
			14.2.2.2: Size
			14.2.2.3: Composition
			14.2.2.4: Shape
	14.3: Pharmacokinetics of Nanoparticles
		14.3.1: Absorption
		14.3.2: Distribution
		14.3.3: Metabolism
		14.3.4: Excretion
	14.4: Pharmacokinetic Evaluation of Nanoparticles
	14.5: Physiologically Based Pharmacokinetic Modeling for Nanoparticles
		14.5.1: PBPK Modeling for the Evaluation of Nanoparticle Biodistribution
		14.5.2: PBPK Modeling in the Formulation Development of Nanoparticles
	14.6 Conclusion
Chapter 15: Evaluation of the in vivo Preclinical Toxicity of Targeted Nanoparticles
	15.1: Introduction
	15.2: The Effects of Physicochemical Properties of Nanomaterials on Toxicity
		15.2.1: Important Exposure Routes
			15.2.1.1: The respiratory system
			15.2.1.2: Skin
			15.2.1.3: The gastrointestinal tract
		15.2.2: Nanotoxicity of Nanomaterials and NPs
			15.2.2.1: Nanoparticle–DNA interaction
			15.2.2.2: Effect on fetuses
			15.2.2.3: Toxic effect on the immune system
	15.3: Toxicity Studies
		15.3.1: Acute Toxicity
			15.3.1.1: Acute oral toxicity
			15.3.1.2: Acute inhalation toxicity
			15.3.1.3: Acute dermal toxicity
			15.3.1.4: Acute dermal irritation/corrosion
		15.3.2: Subacute Toxicity
			15.3.2.1: Subacute oral toxicity
			15.3.2.2: Subacute dermal toxicity
			15.3.2.3: Subacute inhalation toxicity
		15.3.3: Subchronic Toxicity
			15.3.3.1: Subchronic oral toxicity
			15.3.3.2: Subchronic dermal toxicity
			15.3.3.3: Subchronic inhalation toxicity
		15.3.4: Chronic Toxicity
			15.3.4.1: Chronic toxicity studies
			15.3.4.2: Combined chronic toxicity/carcinogenicity studies
		15.3.5: Special Toxicities
			15.3.5.1: Teratogenicity: prenataldevelopmental toxicity study
			15.3.5.2: One-generation reproduction toxicity
			15.3.5.3: Two-generation reproductiontoxicity
			15.3.5.4: Carcinogenicity studies
			15.3.5.5: Immunotoxicity
			15.3.5.6: Lymph node proliferation assay
Chapter 16: Transdermal Delivery of Targeted Nanoparticles and in vitro Evaluation
	16.1: Introduction
	16.2: Skin
		16.2.1: Structure of the Skin and Barriers
			16.2.1.1: Epidermis
			16.2.1.2: Dermis
			16.2.1.3: Hypodermis
			16.2.1.4: Skin appendages
		16.2.2: Ways of Drug Delivery through the Skin
			16.2.2.1: Intracellular transition
			16.2.2.2: Intercellular transition
			16.2.2.3: Transition through skin appendages
		16.2.3: Factors Affecting Transdermal Drug Delivery
			16.2.3.1: Features that depend on the drug active substance
			16.2.3.2: Features that depend on the drug delivery systems
			16.2.3.3: Physiological properties
	16.3: Transdermal Nanocarriers
	16.4: Nanoparticles
		16.4.1: Preparation Methods of Nanoparticles
			16.4.1.1: Emulsion-solvent evaporation
			16.4.1.2: Salting out method
			16.4.1.3: Emulsions diffusion method
			16.4.1.4: Nanoprecipitation
			16.4.1.5: Polymerization
			16.4.1.6: Dialysis
			16.4.1.7: Coacervation or ionic gelation
			16.4.1.8: Supercritical fluid technology
	16.5: In vitro Studies
		16.5.1: In vitro Characterization Studies
			16.5.1.1: Size and zeta potential of nanoparticles
			16.5.1.2: Drug release profile of nanoparticles
		16.5.2: In vitro Cell Studies
			16.5.2.1: Skin permeation studies
			16.5.2.2: Skin penetration studies
	16.6: Therapeutic Application of Transdermal Nanoparticles
	16.7: Conclusion
Chapter 17: In vivo and in vitro Evaluation of Nose-to-Brain Delivery of Nanoparticles
	17.1: Introduction
	17.2: Nasal Anatomy and Physiology
	17.3: Nose-to-Brain Delivery
	17.4: Nasal Delivery Systems
		17.4.1: Colloidal Systems in the Aspect of Nasal Delivery
			17.4.1.1: Liposomes
			17.4.1.2: Cationic liposomes
			17.4.1.3: Polymeric micelles
			17.4.1.4: Dendrimers
		17.4.2: Nanoparticular Systems in the Aspect of Nasal Delivery
			17.4.2.1: Solid lipid nanoparticles
			17.4.2.2: Polymeric nanoparticles
	17.5: Methods for Determining Efficiency of Nose-to-Brain Delivery of Nanoparticles
		17.5.1: In vitro Drug Release Methods
		17.5.2: In vitro Permeation Studies
		17.5.3: In vitro Toxicity Studies
		17.5.4: Ex vivo Permeation and Histopathological Studies
		17.5.5: In vivo Permeation Studies for Nasal Delivery of Nanoparticles
	17.6: Conclusion
Chapter 18: Evaluation of Targeted Nanoparticles for Ocular Delivery
	18.1: Introduction
	18.2: Pharmacokinetic and Bioavailability Studies
	18.3: Biodistribution Studies
	18.4: Tolerance Assays
	18.5: Conclusion
Chapter 19: Vaginally Applied Nanocarriers and Their Characterizations
	19.1: Introduction
	19.2: Novel Approaches for Vaginal Drug Delivery Systems
	19.3: Nanotechnology-Based Vaginal System
	19.4: Nanosized Dosage Forms Used for Vaginal Drug Delivery
		19.4.1: Vesicular systems for Vaginal Drug Delivery
			19.4.1.1: Liposomes
			19.4.1.2: Niosomes, ethosomes, and transethosomes
		19.4.2: Polymeric Nanoparticles
		19.4.3: Microemulsions
		19.4.4: Dendrimers
		19.4.5: Nanofibers
		19.4.6: Cyclodextrins
	19.5: Conclusion
Chapter 20: Oral Administration of Nanoparticles and Approaches for Design, Evaluation, and State of the Art
	20.1: Introduction
	20.2: Oral Drug Delivery
		20.2.1: Gastrointestinal Tract and Related Challenges
		20.2.2: Intestinal Absorption
	20.3: Nanoparticulate Drug Delivery Systems for Oral Administration
		20.3.1: Nanobased Strategies to Overcome the Challenges in Oral Drug Delivery
			20.3.1.1: Improving drug solubility
			20.3.1.2: Improving stability through the GIT
			20.3.1.3: Improving adhesion and diffusion through the GIT
	20.4: Oral Administrations of Nanoparticulate Drug Delivery Systems
		20.4.1: Cancer Therapy
		20.4.2: Protein and Peptide Drugs
		20.4.3: Intestinal Targeting
			20.4.3.1: Inflammatory bowel disease and colon targeting for colorectal cancer
Chapter 21: Drug Resistance Mechanisms and Strategies to Overcome Drug Resistance with Nanoparticulate Systems
	21.1: Introduction
	21.2: Antimicrobial Resistance
		21.2.3: Nanoparticles and AMR
			21.2.3.1: Metallic nanoparticles
			21.2.3.2: Polymeric nanoparticles
			21.2.3.3: Nitric oxide–releasing nanoparticles
		21.2.4: In vitro Antimicrobial Activity Methods
			21.2.4.1: Disk diffusion
			21.2.4.2: Dilution
			21.2.4.3: The checkerboard method
			21.2.4.3: Time–kill curves
		21.2.1: Antibiotic Resistance
		21.2.2: Development Mechanism of AMR
	21.3: Anticancer Resistance
		21.3.1: The Potential Mechanism of Anticancer Drug Resistance
			21.3.1.1: Tumor heterogeneity and microenvironment
			21.3.1.2: Mitochondria-mediated chemoresistance
			21.3.1.3: Epithelial–mesenchymal transition
			21.3.1.4: Altering drug targeting
			21.3.1.5: Increased drug efflux
		21.3.2: Nanoparticles in Overcoming Chemoresistance
			21.3.2.1: Targeted drug delivery
			21.3.2.2: Delivery of chemosensitizing molecules
			21.3.2.3: Subcellular drug delivery
		21.3.3: In vitro Chemosensitivity Assay
			21.3.3.1: MTT assay
			21.3.3.2: Clonogenic assay
Chapter 22: Clinical Trials of Targeted Nanoparticulate Drug Delivery Systems
	22.1: Introduction
	22.2: Clinical Trials of Targeted Nanoparticulate Drug Delivery Systems
		22.2.1: MM-302
		22.2.2: ThermoDox
		22.2.3: BIND-014
	22.3: Conclusion
Chapter 23: Evaluation of Targeted Mesoporous Silica Nanoparticles
	23.1: Synthesis and Manufacturing
	23.2: Biocompatibility
	23.3: Functionalization
	23.4: Targeting
		23.4.1: Passive Targeting
			23.4.1.1: Size and Shape
			23.4.1.2: Surface charge and composition
		23.4.2: Active Targeting
			23.4.2.1: Antibodies
			23.4.2.2: Proteins/peptides
			23.4.2.3: Vitamins
			23.4.2.4: Saccharides
	23.5: Conclusion
Chapter 24: Evaluation of Targeted Liposomes
	24.1: Introduction
	24.2: Classification of Liposomes
		24.2.1: Based on Structure and Size
			24.2.1.1: Unilamellar vesicles
			24.2.1.2: Multilamellar vesicles
		24.2.2: Based on the Drug Release Mechanism
	24.3: Manufacturing of Liposomes
		24.3.1: Composition
		24.3.2: Direct Mechanical Agitation/Sonication
		24.3.3: Thin-Film Hydration
		24.3.4: Solvent Dispersion/Injection
		24.3.5: Lyophilization of Liposomes
		24.3.6: Sterilization Methods for Liposomes
	24.4: Characterization of Liposomes
		24.4.1: Size, Size Distribution, and Concentration
		24.4.2: Determination of Encapsulated Molecules inside Liposomes
		24.4.3: Physicochemical Characterization
			24.4.3.1: Determination of lamellarity
			24.4.3.2: Transition temperature
			24.4.3.3: Surface charge
			24.4.3.4: Zeta potential
		24.4.4: Surface Morphology and Polymer Modification
		24.4.5: Liposome–Drug Interaction
		24.4.6: Determination of the Residual Organic Solvent
		24.4.7: Regulatory Perspective for Liposome Registration
Chapter 25: Prospects of Nanomedicine with Nanocrystal Technology
	25.1: Nanonization Techniques and Application Areas
	25.2: Nanoparticle Systems
		25.2.1: Nanocrystal Definition
		25.2.2: Properties of Nanocrystals
			25.2.2.1: Increase in dissolution rate by surface area enlargement
			25.2.2.2: Increase in saturation solubility
			25.2.2.3: Increased adhesion to cell membranes
		25.2.3: Production of Nanocrystals
			25.2.3.1: Bottom up processes
			25.2.3.2: Top-down processes
			25.2.3.3: Other techniques for the production of drug nanocrystals
		25.2.4: Advantages and Application Areas of Orally Applied Nanocrystalline Formulations
Chapter 26: Characteristics of Marketed Nanopharmaceutics
	26.1: Different Types of Nanocarriers and Their Main Advantages
	26.2: From Laboratory to Market
	26.3: Approved Nonopharmaceutics and Their Features
		26.3.1: Liposomal-Based Nanopharmaceutics
			26.3.1.1: Liposomal-based nanodrugs approved for anticancer treatment
			26.3.1.2: Liposomal nanodrugs approved for antifungal treatment
			26.3.1.3: Liposome-based drugs approved for analgesic treatment
			26.3.1.4: Liposome-based drug approved for neovascularization treatment
			26.3.1.5: Lipid-based drug approved for hereditary transthyretin-mediated amyloidosis treatment
		26.3.2: Polymer-Based Nanopharmaceutics
		26.3.3: Protein-Based Nanopharmaceutics
		26.3.4: Micelle-Based Nanopharmaceutics
		26.3.5: Crystalline-Based Nanopharmaceutics
		26.3.6: Inorganic/Metallic Nanopharmaceutics
	26.4: Nanopharmaceutical Market Size
	26.5: Future Perspective
Chapter 27: Regulatory Guidelines of the US Food and Drug Administration and the European Medicines Agency for Actively Targeted Nanomedicines
	27.1: Introduction
	27.2: The European Medicines Agency’s Scientific Guidelines for Actively Targeted Nanomedicines
		27.2.1: Reflection Paper on Surface Coatings: General Issues for Consideration Regarding Parenteral Administration of Coated Nanomedicine Products
		27.2.2: Data Requirements for Intravenous Liposomal Products Developed with Reference to an Innovator Liposomal Product
		27.2.3: Development of Block-Copolymer-Micelle Medicinal Products
		27.2.4: Data Requirements for Intravenous Iron-Based Nanocolloidal Products Developed with Reference to an Innovator Medicinal Product
	27.3: The Food and Drug Administration’s Scientific Guidelines for Actively Targeted Nanomedicines
		27.3.1: Considering whether an FDA-Regulated Product Involves the Application of Nanotechnology
		27.3.2: Drug Products, Including Biological Products, That Contain Nanomaterials
			27.3.2.1: Quality: chemistry, manufacturing, and controls
			27.3.2.2: Nonclinical studies
			27.3.2.3: Clinical development
		27.3.3: Liposome Drug Products: Chemistry, Manufacturing, and Controls; Human Pharmacokinetics and Bioavailability; and Labeling Documentation
			27.3.3.1: Chemistry, manufacturing, and controls
			27.3.3.2: Human pharmacokinetics: Bioavailability and bioequivalence
			27.3.3.3: Labeling
	27.4: Conclusion
Index




نظرات کاربران