دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Tuimala J., Laine M.M. سری: ISBN (شابک) : 9529821891 ناشر: سال نشر: 2003 تعداد صفحات: 162 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 Mb
در صورت تبدیل فایل کتاب DNA Microarray Data Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل داده های ریزآرایی DNA نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface List of Contributors Contents Introduction Introduction Why perform microarray experiments? What is a microarray? Microarray production Where can I obtain microarrays? Extracting and labeling the RNA sample RNA extraction from scarse tissue samples Hybridization Scanning Typical research applications of microarrays Experimental design and controls Suggested reading Affymetrix Genechip system Affymetrix technology Single Array analysis Detection p-value Detection call Signal algorithm Analysis tips Comparison analysis Normalization Change p-value Change call Signal Log Ratio Algorithm Genotyping systems Introduction Methodologies Genotype calls Suggested reading Overview of data analysis cDNA microarray data analysis Affymetrix data analysis Data analysis pipeline Experimental design Why do we need to consider experimental design? Choosing and using controls Choosing and using replicates Choosing a technology platform Gene clustering v. gene classification Conclusions Suggested reading Basic statistics Why statistics are needed Basic concepts Variables Constants Distribution Errors Simple statistics Number of subjects Mean (m) Trimmed mean Median Percentile Range Variance and the standard deviation Coefficient of variation Effect statistics Scatter plot Correlation (r) Linear regression Frequency distributions Normal distribution t-distribution Skewed distribution Checking the distribution of the data Transformation Log2-transformation Outliers Missing values and imputation Statistical testing Basics of statistical testing Choosing a test Threshold for p-value Hypothesis pair Calculation of test statistic and degrees of freedom Critical values table Drawing conclusions Multiple testing Analysis of variance Basics of ANOVA Completely randomized experiment Statistics using GeneSpring Simple statistics Tranformations Scatter plot and histogram Correlation Linear regression One-sample t-test Independent samples t-test and ANOVA Suggested reading Analysis Preprocessing of data Rationale for preprocessing Missing values Checking the background reading Calculation of expression change Intensity ratio Log ratio Fold change Handling of replicates Types of replicates Time series Case-control studies Power analysis Averaging replicates Checking the quality of replicates Quality check of replicate chips Quality check of replicate spots Excluding bad replicates Outliers Filtering bad data Filtering uninteresting data Simple statistics Mean and median Standard deviation Variance Skewness and normality Linearity Spatial effects Normalization Similarity of dynamic range, mean and variance Examples using GeneSpring Importing data Background subtraction Calculation of expression change Replicates Checking linearity Normality Filtering Suggested reading Normalization What is normalization? Sources of systematic bias Dye effect Scanner malfunction Uneven hybridization Printing tip Plate and reporter effects Batch effect and array design Experimenter issues What might help to track the sources of bias? Normalization terminology Normalization, standardization and centralization Per-chip and per-gene normalization Global and local normalization Performing normalization Choice of the method Basic idea Control genes Linearity of data matters Basic normalization schemes for linear data Special situations Mathematical calculations Mean centering Median centering Trimmed mean centering Standardization Lowess smoothing Ratio statistics Analysis of variance Spiked controls Dye-swap experiments Some caution is needed Graphical example Example of calculations Using GeneSpring for normalization Suggested reading Finding differentially expressed genes Identifying over- and underexpressed genes Filtering by absolute expression change Statistical single chip methods Noise envelope Sapir and Churchill's single slide method Chen's single slide method Newton's single slide method What about the confidence? Only some treatments have replicates All the treatments have replicates: two-sample t-test All the treatments have replicates: one-sample t-test GeneSpring examples Suggested reading Cluster analysis of microarray information Basic concept of clustering Principles of clustering Hierarchical clustering Self-organizing map K-means clustering Principal component analysis Pros and cons of clustering Visualization Programs for clustering and visualization Function prediction GeneSpring and clustering Clustering tool Principal components analysis tool Predict parameter value tool Suggested reading Data mining Gene regulatory networks What are gene regulatory networks? Fundamentals Bayesian network Calculating Bayesian network parameters Searching Bayesian network structure Conclusion Suggested reading Data mining for promoter sequences Introduction Introduction Finding promoter region sequences Using EnsMart to retrieve promoter regions Comparison of EnsMart and UCSC searches Pattern search without prior knowledge Summary GeneSpring and promoter analysis Suggested reading Annotations and article mining Retrieving annotations from public databases Retrieving annotations using BLAST Article mining Annotation and gene ontologies using GeneSpring Annotations Ontologies Tools and data management Reporting results Why the results should be reported What details should be reported: the MIAME standard How the data should be presented: the MAGE standard MAGE-OM MAGE-ML; an XML-translation of MAGE-OM MAGE-STK Where and how to submit your data ArrayExpress and GEO MIAMExpress GEO Other options and aspects MIAME-compliant sample attributes in GeneSpring Suggested reading Software issues Data format conversions problems A standard file format Programming Perl Awk R Freeware software packages Cluster and treeview Expression profiler ArrayViewer MAExplorer Bioconductor Commercial software packages VisualGene GeneSpring Kensington J-Express Expression Nti Rosetta Resolver Spotfire Index