دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات گسسته ویرایش: 5 نویسندگان: Susanna Epp سری: ISBN (شابک) : 0357114086, 9780357114087 ناشر: Cengage Learning سال نشر: 2019 تعداد صفحات: 1058 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 17 مگابایت
کلمات کلیدی مربوط به کتاب ریاضیات گسسته با کاربردها ، نسخه متریک: الگوریتم ها، نظریه گراف، بازگشت، نظریه اعداد، نظریه احتمال، ریاضیات گسسته، اثبات ها، نظریه مجموعه ها، عبارات منتظم، منطق ریاضی، ترکیبات، استقرا ریاضی، تحلیل الگوریتم، خودکار حالت محدود
در صورت تبدیل فایل کتاب Discrete Mathematics with Applications, Metric Edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ریاضیات گسسته با کاربردها ، نسخه متریک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ریاضیات گسسته با کاربردها، نسخه پنجم، نسخه متریک مفاهیم پیچیده و انتزاعی را با وضوح و دقت توضیح می دهد و پایه ای قوی برای علوم کامپیوتر و دروس ریاضیات سطح بالای عصر رایانه فراهم می کند. نویسنده سوزانا اپ نه تنها موضوعات اصلی ریاضیات گسسته را ارائه میکند، بلکه استدلالی را نیز ارائه میکند که زیربنای تفکر ریاضی است. دانش آموزان توانایی تفکر انتزاعی را در حین مطالعه ایده های منطق و اثبات ایجاد می کنند. دانشآموزان در حین یادگیری مفاهیمی مانند مدارهای منطقی و جمع رایانه، تحلیل الگوریتم، تفکر بازگشتی، محاسبهپذیری، خودکار، رمزنگاری و ترکیبشناسی، متوجه میشوند که ایدههای ریاضیات گسسته زیربنای علم و فناوری امروزی هستند و برای آن ضروری هستند.
DISCRETE MATHEMATICS WITH APPLICATIONS, 5th Edition, Metric Edition explains complex, abstract concepts with clarity and precision and provides a strong foundation for computer science and upper-level mathematics courses of the computer age. Author Susanna Epp presents not only the major themes of discrete mathematics, but also the reasoning that underlies mathematical thought. Students develop the ability to think abstractly as they study the ideas of logic and proof. While learning about such concepts as logic circuits and computer addition, algorithm analysis, recursive thinking, computability, automata, cryptography and combinatorics, students discover that the ideas of discrete mathematics underlie and are essential to today's science and technology.
Cover Contents Preface Chapter 1: Speaking Mathematically 1.1 Variables 1.2 The Language of Sets 1.3 The Language of Relations and Functions 1.4 The Language of Graphs Chapter 2: The Logic of Compound Statements 2.1 Logical Form and Logical Equivalence 2.2 Conditional Statements 2.3 Valid and Invalid Arguments 2.4 Application: Digital Logic Circuits 2.5 Application: Number Systems and Circuits for Addition Chapter 3: The Logic of Quantified Statements 3.1 Predicates and Quantified Statements I 3.2 Predicates and Quantified Statements II 3.3 Statements with Multiple Quantifiers 3.4 Arguments with Quantified Statements Chapter 4: Elementary Number Theory and Methods of Proof 4.1 Direct Proof and Counterexample I: Introduction 4.2 Direct Proof and Counterexample II: Writing Advice 4.3 Direct Proof and Counterexample III: Rational Numbers 4.4 Direct Proof and Counterexample IV: Divisibility 4.5 Direct Proof and Counterexample V: Division into Cases and the Quotient-Remainder Theorem 4.6 Direct Proof and Counterexample VI: Floor and Ceiling 4.7 Indirect Argument: Contradiction and Contraposition 4.8 Indirect Argument: Two Famous Theorems 4.9 Application: The Handshake Theorem 4.10 Application: Algorithms Chapter 5: Sequences, Mathematical Induction, and Recursion 5.1 Sequences 5.2 Mathematical Induction I: Proving Formulas 5.3 Mathematical Induction II: Applications 5.4 Strong Mathematical Induction and the Well-Ordering Principle for the Integers 5.5 Application: Correctness of Algorithms 5.6 Defining Sequences Recursively 5.7 Solving Recurrence Relations by Iteration 5.8 Second-Order Linear Homogeneous Recurrence Relations with Constant Coefficients 5.9 General Recursive Definitions and Structural Induction Chapter 6: Set Theory 6.1 Set Theory: Definitions and the Element Method of Proof 6.2 Properties of Sets 6.3 Disproofs and Algebraic Proofs 6.4 Boolean Algebras, Russell's Paradox, and the Halting Problem Chapter 7: Properties of Functions 7.1 Functions Defined on General Sets 7.2 One-to-One, Onto, and Inverse Functions 7.3 Composition of Functions 7.4 Cardinality with Applications to Computability Chapter 8: Properties of Relations 8.1 Relations on Sets 8.2 Reflexivity, Symmetry, and Transitivity 8.3 Equivalence Relations 8.4 Modular Arithmetic with Applications to Cryptography 8.5 Partial Order Relations Chapter 9: Counting and Probability 9.1 Introduction to Probability 9.2 Possibility Trees and the Multiplication Rule 9.3 Counting Elements of Disjoint Sets: The Addition Rule 9.4 The Pigeonhole Principle 9.5 Counting Subsets of a Set: Combinations 9.6 r-Combinations with Repetition Allowed 9.7 Pascal's Formula and the Binomial Theorem 9.8 Probability Axioms and Expected Value 9.9 Conditional Probability, Bayes' Formula, and Independent Events Chapter 10: Theory of Graphs and Trees 10.1 Trails, Paths, and Circuits 10.2 Matrix Representations of Graphs 10.3 Isomorphisms of Graphs 10.4 Trees: Examples and Basic Properties 10.5 Rooted Trees 10.6 Spanning Trees and a Shortest Path Algorithm Chapter 11: Analysis of Algorithm Efficiency 11.1 Real-Valued Functions of a Real Variable and Their Graphs 11.2 Big-O, Big-Omega, and Big-Theta Notations 11.3 Application: Analysis of Algorithm Efficiency I 11.4 Exponential and Logarithmic Functions: Graphs and Orders 11.5 Application: Analysis of Algorithm Efficiency II Chapter 12: Regular Expressions and Finite-State Automata 12.1 Formal Languages and Regular Expressions 12.2 Finite-State Automata 12.3 Simplifying Finite-State Automata Appendix A: Properties of the Real Numbers Appendix B: Solutions and Hints to Selected Exercises Index