دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: David V. Kalbaugh
سری:
ISBN (شابک) : 9781498798815, 9781315154961
ناشر:
سال نشر: 2018
تعداد صفحات: 453
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 32 مگابایت
کلمات کلیدی مربوط به کتاب معادلات دیفرانسیل برای مهندسان: موارد ضروری: معادلات دیفرانسیل، ریاضیات مهندسی
در صورت تبدیل فایل کتاب Differential Equations for Engineers : The Essentials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب معادلات دیفرانسیل برای مهندسان: موارد ضروری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب چشم انداز گسترده معادلات دیفرانسیل، از جمله عناصر معادلات دیفرانسیل جزئی (PDEs) را بررسی می کند و به طور خلاصه موضوعاتی را که بیشترین استفاده را دارند به مهندسان ارائه می دهد. هر موضوع را با یک برنامه انگیزشی برگرفته از مهندسی برق، مکانیک و هوافضا معرفی می کند. متن دارای بررسی مبانی، توضیحات گام به گام و مجموعه ای از مسائل حل شده است. توانایی های دانش آموزان را در هنر تقریب و خودآزمایی پرورش می دهد. این کتاب به PDE ها با و بدون شرایط مرزی می پردازد که شباهت های قوی با معادلات دیفرانسیل معمولی و تصاویر واضحی از ماهیت راه حل ها را نشان می دهد. علاوه بر این، هر فصل شامل مشکلات کلمه و مشکلات چالش است. چندین پروژه محاسباتی گسترده در سراسر متن اجرا می شوند.
This book surveys the broad landscape of differential equations, including elements of partial differential equations (PDEs), and concisely presents the topics of most use to engineers. It introduces each topic with a motivating application drawn from electrical, mechanical, and aerospace engineering. The text has reviews of foundations, step-by-step explanations, and sets of solved problems. It fosters students� abilities in the art of approximation and self-checking. The book addresses PDEs with and without boundary conditions, which demonstrates strong similarities with ordinary differential equations and clear illustrations of the nature of solutions. Furthermore, each chapter includes word problems and challenge problems. Several extended computing projects run throughout the text.
Contents......Page 3
Preface......Page 9
1.1 Foundations......Page 11
1.1.2.1 Quadratic Equations......Page 12
1.1.2.3 Systems of Simultaneous Linear Equations......Page 14
1.1.2.4 Logarithms and Exponentials......Page 15
1.1.3 Trigonometry......Page 16
1.1.4.1 Derivative......Page 17
1.1.4.2 Rules of Differentiation......Page 18
1.1.4.3 Infinite Series......Page 19
1.1.5 Integral Calculus......Page 20
1.1.5.1 Change of Variable......Page 21
1.1.6 Transitioning to First-Order Ordinary Differential Equations......Page 22
1.2 Classes of Differential Equations......Page 23
1.3 A Few Other Things......Page 25
1.4 Summary......Page 26
Solved Problems......Page 27
Problems to Solve......Page 31
Word Problems......Page 33
Challenge Problems......Page 35
2.1.1 Example: RC Circuit......Page 39
2.1.2 Time-Varying Equations and Justification of Separation of Variables Procedure......Page 41
2.2 First-Order Linear Nonhomogeneous Ordinary Differential Equations......Page 42
2.2.1 Integrating Factor......Page 44
2.2.3 System Viewpoint......Page 47
2.4 Summary......Page 49
Solved Problems......Page 51
Problems to Solve......Page 54
Word Problems......Page 55
Challenge Problems......Page 58
3.1 Nonlinear Separable Ordinary Differential Equations......Page 62
3.1.1.1 Maximum Speed Going Up......Page 63
3.1.1.2 Maximum Altitude......Page 64
3.1.1.3 Maximum Speed Coming Down......Page 66
3.2 Possibility of Transforming Nonlinear Equations into Linear Ones......Page 68
3.3 Successive Approximations for almost Linear Systems......Page 69
3.4 Summary......Page 72
Solved Problems......Page 73
Problems to Solve......Page 79
Word Problems......Page 81
Challenge Problems......Page 86
Computing Projects: Phase 1......Page 88
4.1 Motivation......Page 96
4.2 Successive Approximations (General Form)......Page 97
4.2.1 Successive Approximations Example......Page 98
4.3.1 Lipschitz Condition......Page 99
4.3.2 Statement of the Existence and Uniqueness Theorem......Page 100
4.3.3 Successive Approximations Converge to a Solution......Page 101
4.4 Qualitative Analysis......Page 103
4.5 Stability Revisited......Page 104
4.6 Local Solutions......Page 105
4.7 Summary......Page 107
Solved Problems......Page 108
Problems to Solve......Page 115
Word Problems......Page 117
Challenge Problems......Page 118
5.1 Second-Order Linear Time-Invariant Homogeneous Ordinary Differential Equations......Page 121
5.1.1 Two Real Roots......Page 123
5.1.2 Repeated Roots......Page 124
5.1.3 Complex Conjugate Roots......Page 126
5.1.4 Under-, Over-, and Critically Damped Systems......Page 129
5.1.5 Stability of Second-Order Systems......Page 130
5.2 Fundamental Solutions......Page 131
5.3.1 Example: Automobile Cruise Control......Page 132
5.3.2 Variation of Parameters (Kernel) Method......Page 137
5.3.3.1 Steady-State Solutions......Page 140
5.3.3.2 Example: RLC Circuit with Sine-Wave Source......Page 142
5.3.3.3 Resonance with a Sine-Wave Source......Page 144
5.3.3.5 Satisfying Initial Conditions Using the Undetermined Coefficients Method......Page 145
5.5 Summary......Page 146
Solved Problems......Page 148
Problems to Solve......Page 156
Word Problems......Page 158
Challenge Problems......Page 163
6.1 Example: Satellite Orbit Decay......Page 171
6.2 Higher-Order Homogeneous Linear Equations......Page 175
6.3.1 Variation of Parameters (Kernel) Method......Page 177
6.3.2 Undetermined Coefficients Method......Page 178
6.4 Existence and Uniqueness......Page 179
6.6 Summary......Page 180
Solved Problems......Page 181
Problems to Solve......Page 187
Word Problems......Page 188
Challenge Problems......Page 189
Computing Projects: Phase 2......Page 191
7.2 Introducing the Laplace Transform......Page 202
7.3 Laplace Transforms of Some Common Functions......Page 203
7.4 Laplace Transforms of Derivatives......Page 204
7.5 Laplace Transforms in Homogeneous Ordinary Differential Equations......Page 206
7.6.1 General Solution Using Laplace Transforms......Page 211
7.6.2 Laplace Transform of a Convolution......Page 215
7.6.3.1 Defining the Dirac Delta Function......Page 217
7.6.3.2 Ordinary Differential Equations with Impulsive Inputs......Page 218
7.6.3.3 Ordinary Differential Equations with Discontinuous Inputs......Page 219
7.6.4 Initial and Final Value Theorems......Page 223
7.6.5 Ordinary Differential Equations with Periodic Inputs......Page 225
7.6.5.1 Response to a Periodic Input......Page 226
7.6.5.2 Resonance with a Nonsinusoidal Periodic Input......Page 227
7.7 Summary......Page 230
Solved Problems......Page 232
Problems to Solve......Page 236
Word Problems......Page 238
Challenge Problems......Page 243
8.1 Preliminaries......Page 248
8.2 Existence and Uniqueness......Page 249
8.3 Numerical Integration Methods......Page 251
8.3.1 Euler Method......Page 252
8.3.2 Runge–Kutta Method......Page 253
8.3.3 Comparing Accuracy of Euler and Runge–Kutta Methods......Page 254
8.3.4 Variable Step Size......Page 255
8.4 Review of Matrix Algebra......Page 256
8.5 Linear Systems in State Space Format......Page 259
8.5.1.1 Real, Distinct Eigenvalues: Heat Transfer Example......Page 261
8.5.1.2 Complex Eigenvalues: Electric Circuit Example......Page 266
8.5.1.3 Complex Eigenvalues: Aircraft Dynamics Example......Page 271
8.5.1.4 Repeated Eigenvalues......Page 279
8.5.1.5 State Transition Matrix......Page 284
8.5.1.6 Linear System Stability in State Space......Page 285
8.5.1.7 Coordinate Systems: Road Vehicle Dynamics......Page 286
8.5.1.8 Coordinate Systems: A General Analytic Approach......Page 290
8.5.2.1 Matrix Kernel Method......Page 291
8.5.2.2 Matrix Laplace Transform Method......Page 298
8.5.2.3 Matrix Undetermined Coefficients Method......Page 301
8.5.2.4 Worth of the Three Methods, in Summary......Page 303
8.6.1 Equilibrium Points......Page 304
8.6.2 Stability......Page 305
8.6.3 Imposition of Limits......Page 306
8.6.4 Uniquely Nonlinear Dynamics......Page 307
8.6.5 Mathematical Modeling Tools for Nonlinear Systems......Page 311
8.7 Summary......Page 313
Solved Problems......Page 315
Word Problems......Page 347
Problems to Solve......Page 342
Challenge Problems......Page 351
9.1 Heat Equation......Page 360
9.1.1.1 Heat Equation in an Example Initial Value Problem......Page 362
9.1.2 Heat Equation in Boundary Value Problems......Page 364
9.2.1 Wave Equation in Initial Value Problems......Page 370
9.2.1.1 Traveling Plane Wave......Page 371
9.2.1.2 Traveling Wave in Spherical Coordinates......Page 373
9.2.2.1 Derivation of the Wave Equation for a Taut Membrane......Page 375
9.2.2.2 Solving the Wave Equation in a Boundary Value Problem in Cylindrical Coordinates......Page 376
9.2.3 Power Series Solutions: An Introduction......Page 382
9.2.4.1 Bessel Functions of the First Kind......Page 384
9.2.4.2 Bessel Functions of the Second Kind......Page 385
9.2.5 Power Series Solutions: Another Example......Page 387
9.2.6.1 A Few Definitions......Page 389
9.2.6.2 Some General Rules......Page 390
9.3 Laplace’s Equation......Page 391
9.3.1 Laplace’s Equation Example in Spherical Coordinates......Page 392
9.4.1 Deriving the Beam Equation......Page 394
9.4.2 Beam Equation in a Boundary Value Problem......Page 395
9.4.3 Orthogonality of the Beam Equation Eigenfunctions......Page 401
9.5 Summary......Page 403
Solved Problems......Page 404
Problems to Solve......Page 411
Word Problems......Page 416
Challenge Problems......Page 417
Appendix......Page 428
Refs......Page 433
Index......Page 435