ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Design for excellence in electronics manufacturing

دانلود کتاب طراحی عالی برای تولید لوازم الکترونیکی

Design for excellence in electronics manufacturing

مشخصات کتاب

Design for excellence in electronics manufacturing

ویرایش:  
نویسندگان:   
سری: Quality and reliability engineering series 
ISBN (شابک) : 9781119109372, 1119109388 
ناشر:  
سال نشر: 2021 
تعداد صفحات: 403 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 7 مگابایت 

قیمت کتاب (تومان) : 56,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Design for excellence in electronics manufacturing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب طراحی عالی برای تولید لوازم الکترونیکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Title Page
Copyright
Contents
Contributors
List of Figures
List of Tables
Series Foreword
Foreword
Preface
Acknowledgments
Acronyms
Chapter 1 Introduction to Design for Excellence
	1.1 Design for Excellence (DfX) in Electronics Manufacturing
	1.2 Chapter : Establishing a Reliability Program
	1.3 Chapter : Design for Reliability (DfR)
	1.4 Chapter : Design for the Use Environment: Reliability Testing and Test Plan Development
	1.5 Chapter : Design for Manufacturability (DfM)
	1.6 Chapter : Design for Sustainability
	1.7 Chapter : Root Cause Problem‐Solving, Failure Analysis, and Continual Improvement Techniques
Chapter 2 Establishing a Reliability Program
	2.1 Introduction
	2.2 Best Practices and the Economics of a Reliability Program
		2.2.1 Best‐in‐Class Reliability Program Practices
	2.3 Elements of a Reliability Program
		2.3.1 Reliability Goals
		2.3.2 Defined Use Environments
		2.3.3 Software Reliability
		2.3.4 General Software Requirements
	2.4 Reliability Data
		2.4.1 Sources of Reliability Data
		2.4.2 Reliability Data from Suppliers
	2.5 Analyzing Reliability Data: Commonly Used Probability and Statistics Concepts in Reliability
		2.5.1 Reliability Probability in Electronics
		2.5.2 Reliability Statistics in Electronics
			2.5.2.1 Basic Statistics Assumptions and Caveats
			2.5.2.2 Variation Statistics
			2.5.2.3 Statistical Distributions Used in Reliability
	2.6 Reliability Analysis and Prediction Methods
	2.7 Summary
	References
Chapter 3 Design for Reliability
	3.1 Introduction
	3.2 DfR and Physics of Failure
		3.2.1 Failure Modes and Effects Analysis
		3.2.2 Fault Tree Analysis
		3.2.3 Sneak Circuit Analysis
		3.2.4 DfR at the Concept Stage
	3.3 Specifications (Product and Environment Definitions and Concerns)
	3.4 Reliability Physics Analysis
		3.4.1 Reliability Physics Alternatives
		3.4.2 Reliability Physics Models and Examples
			3.4.2.1 Arrhenius Equation
			3.4.2.2 Eyring Equation
			3.4.2.3 Black's Equation
			3.4.2.4 Peck's Law
			3.4.2.5 Norris‐Landzberg Equation
			3.4.2.6 Creep Mechanisms
		3.4.3 Component Selection
		3.4.4 Critical Components
		3.4.5 Moisture‐Sensitivity Level
		3.4.6 Temperature‐Sensitivity Level
		3.4.7 Electrostatic Discharge
		3.4.8 Lifetime
	3.5 Surviving the Heat Wave
	3.6 Redundancy
	3.7 Plating Materials: Tin Whiskers
	3.8 Derating and Uprating
	3.9 Reliability of New Packaging Technologies
	3.10 Printed Circuit Boards
		3.10.1 Surface Finishes
			3.10.1.1 Organic Solderability Preservative (OSP)
			3.10.1.2 Immersion Silver (ImAg)
			3.10.1.3 Immersion Tin (ImSn)
			3.10.1.4 Electroless Nickel Immersion Gold (ENIG)
			3.10.1.5 Lead‐Free Hot Air Solder Leveled (HASL)
		3.10.2 Laminate Selection
		3.10.3 Cracking and Delamination
		3.10.4 Plated Through‐Holes and Vias
		3.10.5 Conductive Anodic Filament
		3.10.6 Strain and Flexure Issues
		3.10.7 Pad Cratering
		3.10.8 PCB Buckling
		3.10.9 Electrochemical Migration
			3.10.9.1 Temperature
			3.10.9.2 Relative Humidity
			3.10.9.3 Voltage Bias
			3.10.9.4 Conductor Spacing
			3.10.9.5 Condensation
		3.10.10 Cleanliness
			3.10.10.1 Chloride
			3.10.10.2 Bromide
			3.10.10.3 Cations
			3.10.10.4 Weak Organic Acids
			3.10.10.5 Cleanliness Testing
	3.11 Non‐Functional Pads
	3.12 Wearout Mechanisms
		3.12.1 IC Wearout
	3.13 Conformal Coating and Potting
		3.13.1 Silicone
		3.13.2 Polyurethane
		3.13.3 Epoxy
		3.13.4 Acrylic
		3.13.5 Superhydrophobics
	References
Chapter 4 Design for the Use Environment: Reliability Testing and Test Plan Development
	4.1 Introduction
		4.1.1 Elements of a Testing Program
		4.1.2 Know the Environment
	4.2 Standards and Measurements
	4.3 Failure‐Inducing Stressors
	4.4 Common Test Types
		4.4.1 Temperature Cycling
		4.4.2 Temperature‐Humidity‐Bias Testing
		4.4.3 Electrical Connection
		4.4.4 Corrosion Tests
		4.4.5 Power Cycling
		4.4.6 Electrical Loads
		4.4.7 Mechanical Bending
		4.4.8 Random and Sinusoidal Vibration
		4.4.9 Mechanical Shock
		4.4.10 ALT Testing
		4.4.11 Highly Accelerated Life Testing (HALT)
		4.4.12 EMC Testing Dos and Don'ts
	4.5 Test Plan Development
		4.5.1 The Process
		4.5.2 Failure Analysis
		4.5.3 Screening Tests
		4.5.4 Case Study One
		4.5.5 Case Study Two
		4.5.6 Case Study Three
	References
Chapter 5 Design for Manufacturability
	5.1 Introduction
	5.2 Overview of Industry Standard Organizations
	5.3 Overview of DfM Processes
		5.3.1 The DfM Process
	5.4 Component Topics
		5.4.1 Part Selection
		5.4.2 Moisture Sensitivity Level (MSL)
		5.4.3 Temperature Sensitivity Level (TSL)
		5.4.4 ESD
		5.4.5 Derating
		5.4.6 Ceramic Capacitor Cracks
		5.4.7 Life Expectancies
		5.4.8 Aluminum Electrolytic Capacitors
		5.4.9 Resistors
		5.4.10 Tin Whiskers
		5.4.11 Integrated Circuits
	5.5 Printed Circuit Board Topics
		5.5.1 Laminate Selection
		5.5.2 Surface Finish
		5.5.3 Discussion of Different Surface Finishes
		5.5.4 Stackup
		5.5.5 Plated Through‐Holes
		5.5.6 Conductive Anodic Filament (CAF) Formation
		5.5.7 Copper Weight
		5.5.8 Pad Geometries
		5.5.9 Trace and Space Separation
		5.5.10 Non‐Functional Pads
		5.5.11 Shipping and Handling
		5.5.12 Cleanliness and Contamination
	5.6 Process Materials
		5.6.1 Solder
		5.6.2 Solder Paste
		5.6.3 Flux
		5.6.4 Stencils
		5.6.5 Conformal Coating
		5.6.6 Potting
		5.6.7 Underfill
		5.6.8 Cleaning Materials
		5.6.9 Adhesives
	5.7 Summary: Implementing DfM
	References
Chapter 6 Design for Sustainability
	6.1 Introduction
	6.2 Obsolescence Management
		6.2.1 Obsolescence‐Resolution Techniques
			6.2.1.1 Industry Standards
			6.2.1.2 Asset Security
	6.3 Long‐Term Storage
	6.4 Long‐Term Reliability Issues
	6.5 Counterfeit Prevention and Detection Strategies
	6.6 Supplier Selection
		6.6.1 Selecting a Printed Circuit Board Fabricator
		6.6.2 Auditing a Printed Circuit Board Fabricator
			6.6.2.1 Selecting a Contract Manufacturer
			6.6.2.2 Auditing a Contract Manufacturer
			6.6.2.3 Summary
	References
Chapter 7 Root Cause Problem‐Solving, Failure Analysis, and Continual Improvement Techniques
	7.1 Introduction
		7.1.1 Continual Improvement
		7.1.2 Problem‐Solving
		7.1.3 Identifying Problems and Improvement Opportunities
		7.1.4 Overview of Industry Standard Organizations
	7.2 Root Cause Failure Analysis Methodology
		7.2.1 Strategies for Selecting an Approach
		7.2.2 The 5 Whys Approach
		7.2.3 The Eight Disciplines (8D)
		7.2.4 Shainin Red X: Diagnostic Journey
		7.2.5 Six Sigma
		7.2.6 Physics of Failure
	7.3 Failure Reporting, Analysis, and Corrective Action System (FRACAS)
	7.4 Failure Analysis
		7.4.1 Failure Analysis Techniques
			7.4.1.1 Visual Inspection
			7.4.1.2 Electrical Characterization
			7.4.1.3 Scanning Acoustic Microscopy
			7.4.1.4 X‐Ray Microscopy
			7.4.1.5 Thermal Imaging
			7.4.1.6 SQUID Microscopy
			7.4.1.7 Decapsulation
			7.4.1.8 Cross‐Sectioning
			7.4.1.9 Scanning Electron Microscope / Energy Dispersive X‐ray Spectroscopy (SEM/EDX)
			7.4.1.10 Surface/Depth Profiling Techniques: Secondary Ion Mass Spectroscopy (SIMS), Auger
			7.4.1.11 Focused Ion Beam (FIB)
			7.4.1.12 Mechanical Testing: Wire Pull, Wire Shear, Solder Ball Shear, Die Shear
			7.4.1.13 Fourier Transform Infra‐Red Spectroscopy FTIR
			7.4.1.14 Ion Chromatography
			7.4.1.15 Differential Scanning Calorimetry (DSC)
			7.4.1.16 Thermomechanical Analysis / Dynamic Mechanical Analysis (DMA/TMA)
			7.4.1.17 Digital Image Correlation (DIC)
			7.4.1.18 Other Simple Failure Analysis Tools
		7.4.2 Failure Verification
		7.4.3 Corrective Action
		7.4.4 Closing the Failure Report
	7.5 Continuing Education and Improvement Activities
	7.6 Summary: Implementing Root Cause Methodology
	References
Chapter 8 Conclusion to Design for Excellence: Bringing It All Together
	8.1 Design for Excellence (DfX) in Electronics Manufacturing
	8.2 Chapter 2: Establishing a Reliability Program
	8.3 Chapter : Design for Reliability (DfR)
	8.4 Chapter : Design for the Use Environment: Reliability Testing and Test Plan Development
	8.5 Chapter : Design for Manufacturability
	8.6 Chapter : Design for Sustainability
	8.7 Chapter : Root Cause Problem Solving, Failure Analysis, and Continual Improvement Techniques
Index
EULA




نظرات کاربران