دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Somasree Ray. Amit Kumar Nayak
سری: Woodhead Publishing Series in Biomaterials
ISBN (شابک) : 0323899536, 9780323899536
ناشر: Woodhead Publishing
سال نشر: 2022
تعداد صفحات: 412
[413]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 18 Mb
در صورت تبدیل فایل کتاب Design and Applications of Theranostic Nanomedicines به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی و کاربردهای نانوداروهای ترانوستیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
طراحی و کاربردهای نانوداروهای ترانوستیک ترکیب و طراحی نانوداروهای مختلف را برای کاربردهای ترانوستیک بررسی میکند و به خوانندگان کمک میکند تا هنگام کاوش در درمانهای جدید بیماری تصمیمگیری آگاهانه بگیرند. این کتاب با نگاهی متعادل به چالشها، هزینهها و منافع مرتبط، خوانندگان را با نانوساختارهای ترانوستیک بهعنوان نانوداروها آشنا میکند. بخش بعدی به جزئیات طیف وسیعی از نانوداروهای ترانوستیک مختلف و طراحی آنها، از نانو پراکندگیها و نانوژلها گرفته تا اگزوزومها و میسلهای پلیمری میپردازد. کاربردهای مختلفی از جمله در درمان بیماری های ریوی، اختلالات عصبی، سرطان ها و موارد دیگر پوشش داده شده است. این کتاب همچنین نگاهی به پیامدهای سمشناسی نانوترانوستیکها، که جنبهای مهم از هر نوع درمان یا درمانی است، میاندازد. طراحی و کاربردهای نانوداروهای ترانوستیک تصویری از آخرین هنر ارائه می دهد و برای دانشمندان مواد، مهندسان زیست پزشکی و دانشمندان داروسازی که علاقه مند به نانوتکنولوژی و ترانوستیک هستند، استفاده خواهد شد. چالشها، هزینهها، مزایا و پیامدهای سمشناسی نانوترانوستیکها را بررسی میکند طیف وسیعی از نانوداروها و طراحی آنها، از جمله لیپوزومها، نانوهیدرژلها، نانوکوکلیتها و موارد دیگر را بررسی میکند.
Design and Applications of Theranostic Nanomedicines reviews the composition and design of various nanomedicines for theranostic applications, helping readers to make informed decisions when exploring novel treatments for disease. This book introduces readers to theranostic nanostructures as nanomedicines, beginning with a balanced look at the associated challenges, costs and benefits. The next section goes on to detail a range of different theranostic nanomedicines and their design, from nanodispersions and nanogels to exosomes and polymeric micelles. A variety of applications is covered, including in the treatment of pulmonary diseases, neurological disorders, cancers and more. The book also takes a look at the toxicological implications of nanotheranostics, an important aspect of any therapy or treatment. Design and Applications of Theranostic Nanomedicines provides a snapshot of the state-of-the-art, and will be of use to materials scientists, biomedical engineers and pharmaceutical scientists with an interest in nanotechnology and theranostics. Explores the challenges, costs, benefits and toxicological implications of nanotheranostics Reviews a range of nanomedicines and their design, including liposomes, nanohydrogels, nanocochleate and more Details a variety of applications, such as in drug delivery, neurological disorders, cardiovascular diseases and so on
Design and Applications of Theranostic NanomedicinesWoodhead Publishing Series in BiomaterialsEdited bySomasree RayProfesso ... Copyright Dedication List of contributors Preface 1. Theranostic nanostructures as nanomedicines: benefits, costs, and future challenges 1.1 Introduction 1.2 Nanotechnology, nanoscale, and nanostructures 1.2.1 Carbonaceous-based hybrid nanostructures 1.2.2 Organic-based nanostructures 1.2.3 Inorganic-based nanostructures 1.3 Design of theranostic nanostructures as nanomedicines 1.3.1 Therapeutic pay-loads 1.3.1.1 Therapeutics 1.3.1.2 Imaging 1.3.2 Nanocarriers 1.3.2.1 Polymeric nanoparticles and micelles 1.3.2.2 Lipid nanovesicles 1.3.2.3 Dendrimers 1.3.2.4 Protein-based nanostructures 1.3.2.5 Metallic nanostructures 1.3.2.6 Ceramic nanostructures 1.3.2.7 Nanocomposites 1.3.2.8 Nanoconjugates 1.4 Applications of theranostic nanostructures as nanomedicines 1.5 Benefits and costs of theranostic nanostructures as nanomedicines 1.6 Challenges of theranostic nanostructures as nanomedicines 1.7 Conclusion References 2. Theranostic nanogels: design and applications 2.1 Introduction 2.2 Nanogels 2.3 Theranostic nanogels 2.4 Designs of theranostic nanogels 2.4.1 Optical imaging 2.4.2 Magnetic resonance imaging 2.4.3 Ultrasound imaging 2.4.4 Photoacoustic imaging 2.4.5 Positron emission tomography 2.4.6 X-ray computed tomography 2.4.7 Multimodal imaging 2.5 Conclusion Acknowledgments References 3. Exosomes: a novel tool for diagnosis and therapy 3.1 Introduction 3.2 Exosomes 3.3 Biological functions of exosomes 3.4 Exosomes as biomarkers of diseases 3.4.1 Targeted exosomes for cancer therapy 3.5 Exosomes as therapeutic tools in other pathologies 3.6 Exosomes as a novel tool for diagnosis References 4. Engineered liposomes as drug delivery and imaging agents 4.1 Introduction 4.2 Liposomes and their classifications 4.3 Preparation of liposomes 4.3.1 Conventional methods 4.3.1.1 Hydration method 4.3.1.2 Electroformation method 4.3.1.3 Bulk methods 4.3.2 Novel methods 4.3.2.1 Recent hydration techniques Heating method Curvature tuning method Packed bed-assisted hydration method Localized IR heating method Osmotic shock method Spray drying method Freeze drying and lyophilization method Gel assisted hydration Hydration on glass beads 4.3.2.2 Recent electroformation method Modified electroformation method Electroformation in microfluidics 4.3.2.3 Recent bulk methods Membrane contractor Microfluidics Supercritical fluids technique Stationary phase interdiffusion (SPI) method Modified detergent depletion technique 4.4 Rationale for the development of engineered liposomes 4.4.1 Engineered liposomes 4.4.1.1 PEGylated liposomes 4.4.1.2 Engineering of liposomes with peptides 4.4.1.3 Engineering of liposomes with antibody 4.4.1.4 Engineering of liposomes with aptamers 4.4.1.5 Engineering of liposomes with small molecules 4.4.1.6 Biopolymer-coated liposomes 4.4.1.7 Radiolabeled liposomes 4.5 Engineered liposomes in drug delivery 4.6 Engineered liposomes in imaging 4.7 Theranostic engineered liposomes 4.8 Challenges and limitations of engineered liposomes as nanotheranostics 4.9 Conclusion and future perspective References 5. Polymeric micelles for theranostic uses 5.1 Introduction 5.2 Advantages and disadvantages of polymeric micelle 5.2.1 Advantages 5.2.1.1 Disadvantages 5.3 Different types of polymer micelle as carrier systems used for the delivery of drugs 5.3.1 Micelle forming polymer-drug conjugates 5.3.2 Polymeric micellar nanoparticles 5.3.2.1 Dialysis method 5.3.2.2 o/w emulsion method 5.3.2.3 Solvent evaporation method 5.3.2.4 Cosolvent evaporation method 5.3.2.5 Freeze-drying method 5.3.3 Polyion complex micelle 5.4 Mechanism of drug release from polymeric micelles 5.5 Pharmaceutical applications of polymeric micelle 5.5.1 Use of polymeric micelle as a solubilizing agent for water-insoluble drugs 5.5.2 Passive targeting of drug-using polymer micelle 5.5.3 Active targeting of drugs using polymeric micelle 5.6 Conclusion References 6. Dendrimers: an effective drug delivery and therapeutic approach 6.1 Introduction 6.2 Synthesis procedure of dendrimer structure 6.2.1 Convergent and divergent method 6.2.2 Hypermonomer method/branched monomer synthesis approach 6.2.3 Lego chemistry 6.2.4 Click chemistry 6.2.5 Orthogonal synthesis 6.2.6 Double exponential 6.3 Dendrimers in drug delivery 6.4 Advancement of dendrimer-based drug delivery in biomedical field 6.4.1 Progress of dendrimer-based research against cancer 6.4.2 Dendrimers in pharmaceutical preparations for brain delivery 6.4.3 Dendrimer-based drug delivery in topical preparations 6.5 Conclusion Acknowledgments References 7. Nanocochleates: A novel lipid-based nanocarrier system for drug delivery 7.1 Introduction 7.2 History of the development of nanocochleates 7.3 Chemistry and mechanism of self-assembly of nanocochleates 7.4 Components of nanocochleates 7.4.1 Lipids 7.4.2 Cations 7.4.3 Drugs 7.5 Routes of administration 7.6 Advantages of nanocochleate-based drug delivery system 7.7 Limitations of nanocochleate-based drug delivery system 7.8 Mechanism of action of nanocochleate-based drug delivery system 7.8.1 Absorption after oral administration 7.8.2 Delivery to targeted cell 7.8.2.1 Delivery after phagocytosis 7.8.2.2 Delivery by cell membrane fusion 7.9 Method of nanocochleates preparation 7.9.1 Trapping method 7.9.2 Hydrogel method 7.9.3 Liposomes before cochleates (LC) dialysis method 7.9.4 Direct calcium (DC) dialysis method 7.9.5 Binary aqueous-aqueous emulsion system 7.9.6 Solvent drip method 7.10 Stabilization of nanocochleates 7.11 Characterization of nanocochleates 7.11.1 Particle size determination 7.11.2 Density 7.11.3 Drug content 7.11.4 Encapsulation efficiency (EE) 7.11.5 Stability study 7.11.6 Specific surface area 7.11.7 Surface charge determination 7.11.8 Cochleates-cell interaction 7.11.9 In vitro release study 7.11.10 Surface morphology study 7.11.11 Structural study of nanocochleates 7.11.12 Differential scanning calorimetry study 7.11.13 Determination of surface hydrophobicity of nanocochleates 7.12 Applications of nanocochleate-based drug delivery system 7.12.1 Delivery of antifungal agents 7.12.2 Delivery of antibacterial agents 7.12.3 ApoA1 formulation 7.12.4 Delivery of essential oils 7.12.5 Delivery of nutraceuticals 7.12.6 Delivery of vaccines 7.12.7 Gene delivery 7.12.8 Delivery of factor VIII 7.12.9 Delivery of insulin 7.12.10 Delivery of anti-inflammatory agents 7.12.11 Topical drug delivery 7.12.12 Delivery of anticancer agents 7.12.13 Delivery of andrographolide (AN) 7.12.14 Delivery of resveratrol (RSV) 7.12.15 Delivery of artemisinin (ART) 7.12.16 Delivery of cyclosporine A (CsA) 7.13 Commercial status of nanocochleates 7.14 Conclusions and future perspectives References 8. Theranostic applications of nanoemulsions in pulmonary diseases 8.1 Introduction 8.1.1 Nanoemulsions formulation 8.1.2 Nanoemulsions fabrication 8.1.2.1 High-energy emulsification techniques 8.1.2.1.1 Microfluidization 8.1.2.1.2 High-pressure homogenizer 8.1.2.1.3 Ultrasonication 8.1.2.2 Low-energy emulsification techniques 8.1.2.2.1 Phase inversion technique 8.1.2.2.2 Solvent displacement method 8.1.2.2.3 Self-emulsification method 8.1.3 Characterization of NEs 8.1.3.1 Characterization of NE aerosols 8.1.4 Generations of NEs 8.1.4.1 First-generation NEs 8.1.4.2 Second-generation NEs 8.1.4.3 Third-generation NEs 8.1.5 General anatomy of the respiratory system 8.2 Theranostic applications of NEs 8.2.1 Combined theranostic NEs 8.3 NEs-based drug delivery systems 8.3.1 NEs-based drug delivery systems for cancer treatment 8.3.2 NEs-based drug delivery systems for bacterial diseases 8.3.3 NEs-based drug delivery systems for fungal diseases 8.3.4 NEs-based drug delivery systems for bacterial and fungal diseases 8.3.5 NEs-based drug delivery systems for pulmonary arterial hypertension 8.3.6 NEs-based systems for antibodies delivery 8.3.7 NEs-based drug delivery systems for acute lung injury 8.4 NEs-based diagnostics 8.4.1 NEs-based systems for cancer detection 8.4.2 NEs-based systems for thrombosis detection 8.5 Clearance of NEs 8.6 Advantages and disadvantages of NEs 8.6.1 Advantages of NEs [12,27,235,236] 8.6.2 Disadvantages of NEs [27,235,236] 8.7 Conclusion Abbreviations References Further reading 9. Polymeric nanoparticles as tumor-targeting theranostic platform 9.1 Introduction 9.2 Definition of nanothranostics with some examples 9.3 Significance of nanotheranostic and comparison between nanotheranostic and nanotherapeutics 9.4 Advantages of polymeric nanoparticles for tumor targeting 9.5 Nanoparticles for imaging, diagnosis, and therapy 9.6 Different methods of tumor targeting 9.6.1 Passive targeting 9.6.2 Active targeting 9.6.3 Physical targeting 9.7 Polymeric nanomedicines in a clinical trial 9.8 Future prospect 9.9 Conclusion References 10. Site-specific theranostic uses of stimuli responsive nanohydrogels 10.1 Introduction 10.2 Classification of nano hydrogel 10.3 Stimulus responsive nanogels 10.3.1 Single stimuli responsive nanogels 10.3.1.1 pH sensitive nanogels 10.3.1.2 Temperature sensitive nanogels 10.3.1.3 Redox responsive nanogels 10.3.1.4 Light responsive nanogels 10.3.1.5 Magnetic field responsive nanogels 10.3.2 Dual-stimuli responsive nano hydrogel 10.3.2.1 pH and temperature-sensitive nanogel 10.3.2.2 pH and redox sensitive nanogel 10.4 Applications of nanogels in drug delivery 10.5 Toxicity of stimulus sensitive nanogels 10.6 Conclusion References 11. Ligand appended theranostic nanocarriers for targeted blood–brain barrier 11.1 Introduction 11.2 Blood–brain barrier 11.2.1 What is BBB? 11.2.1.1 Cellular transport channels 11.2.1.2 Essential features of the BBB 11.2.1.3 Cells of the BBB 11.2.1.3.1 Endothelial cells 11.2.1.3.2 Astrocytes 11.2.1.3.3 Pericytes 11.2.1.3.4 Basement membrane 11.2.1.3.5 Neurons 11.2.2 Physiological properties of BBB 11.2.2.1 Regulation of the BBB formation and homeostasis 11.2.2.2 Regulation of barrier properties during angiogenesis 11.2.2.3 Regulation of the BBB by pericytes 11.2.2.4 Regulation of the BBB by astrocytes 11.2.3 Crossing the BBB 11.2.3.1 Passive permeability 11.2.3.2 Carrier-mediated transport 11.2.3.3 Active efflux transport 11.2.3.4 Receptor-mediated transport 11.2.3.5 Adsorption-mediated transport 11.3 Ligand appended nanocarriers 11.3.1 Types of nanocarriers 11.3.1.1 Folate 11.3.1.2 Transferrin 11.3.1.3 Aptamers 11.3.1.4 Antibodies 11.3.1.5 Peptides 11.3.2 Preparation methods 11.3.2.1 Covalent coupling 11.3.2.2 Noncovalent coupling 11.3.3 Physicochemical properties 11.3.3.1 Size and shape of the nanomaterials 11.3.3.2 Surface charge of nanoparticles 11.3.3.3 Surface chemistry of nanoparticles 11.4 Applications of ligand appended nanocarriers 11.5 Underlying challenges and future prospects References 12. Nanotheranostics in CNS Malignancy 12.1 Introduction 12.2 Glioblastoma 12.3 Blood brain barrier (BBB) 12.4 Blood brain tumor barrier (BBTB) 12.5 Nanotheranostics 12.5.1 Gold nanoparticles (AuNPs) 12.5.2 Quantum dots (QDs) 12.5.3 Magnetic nanoparticles 12.5.4 Mesosporous silica nanoparticles (MSNs) 12.5.5 Solid lipid nanoparticles (SLNs) 12.5.6 Dendrimers 12.5.7 Liposomes 12.6 Conclusion References 13. Application of nanotheranostics in cancer 13.1 Introduction 13.2 Nanomedicines as cancer theranostics 13.2.1 Super paramagnetic iron oxide nanoparticles (SPIONs) 13.2.2 Gold nanotheranostics 13.2.3 Application of quantum dots (QDs) as nanotheranostics 13.2.4 Applications of carbon nanotubes (CNTs), carbon dots (CDs), and graphene as nanotheranostics 13.2.5 Micelles 13.2.6 Liposomes nanotheranostics 13.3 Emergence and scope of nanotheranostics 13.4 Conclusion References 14. Self-assembled protein nanoparticles for multifunctional theranostic uses 14.1 Introduction 14.1.1 Self-assembly of proteins 14.1.2 Self-assembling protein nanoparticle (SAPN) morphologies 14.1.3 SAPN applications 14.1.3.1 Bionanotechnology applications 14.1.3.2 Improving vaccine immunogenicity with a new platform 14.1.3.3 Vaccines 14.1.3.4 Malaria 14.1.3.5 SARS 14.1.3.6 Toxoplasmosis 14.1.3.7 Influenza 14.1.3.8 SAPNs for HIV-1 vaccine development References 15. Nanotheranostics: The toxicological implications 15.1 Nanotheranostics: A tool for personifying medicine 15.2 Nanotheranostics: Bridging a therapeutic notch 15.3 Toxicity in nanotheranostics 15.4 Hazards associated with nanotheranostics 15.5 Factors influencing toxic responses to nanotheranostic agents 15.5.1 Surface area and size 15.5.2 Surface characteristics 15.5.3 Confounding effects of impurities and stability 15.5.4 Route of exposure 15.6 Toxic concern of materials commonly used in nanotheranostics 15.6.1 Gold nanoparticles 15.6.2 Copper sulfide nanoparticles 15.6.3 Fullerene 15.6.4 Dendrimers 15.6.5 Quantum dots 15.7 Silica 15.8 Toxicity in nanotheranostics: the mechanistic basis 15.9 Toxicity evaluation of nanotheranostic agents: testing systems in vitro and in vivo 15.10 Conclusion References Index A B C D E F G H I K L M N O P Q R S T U V W X Y Z