ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Design and Applications of Theranostic Nanomedicines

دانلود کتاب طراحی و کاربردهای نانوداروهای ترانوستیک

Design and Applications of Theranostic Nanomedicines

مشخصات کتاب

Design and Applications of Theranostic Nanomedicines

ویرایش:  
نویسندگان:   
سری: Woodhead Publishing Series in Biomaterials 
ISBN (شابک) : 0323899536, 9780323899536 
ناشر: Woodhead Publishing 
سال نشر: 2022 
تعداد صفحات: 412
[413] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 18 Mb 

قیمت کتاب (تومان) : 40,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب Design and Applications of Theranostic Nanomedicines به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب طراحی و کاربردهای نانوداروهای ترانوستیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب طراحی و کاربردهای نانوداروهای ترانوستیک

طراحی و کاربردهای نانوداروهای ترانوستیک ترکیب و طراحی نانوداروهای مختلف را برای کاربردهای ترانوستیک بررسی می‌کند و به خوانندگان کمک می‌کند تا هنگام کاوش در درمان‌های جدید بیماری تصمیم‌گیری آگاهانه بگیرند. این کتاب با نگاهی متعادل به چالش‌ها، هزینه‌ها و منافع مرتبط، خوانندگان را با نانوساختارهای ترانوستیک به‌عنوان نانوداروها آشنا می‌کند. بخش بعدی به جزئیات طیف وسیعی از نانوداروهای ترانوستیک مختلف و طراحی آنها، از نانو پراکندگی‌ها و نانوژل‌ها گرفته تا اگزوزوم‌ها و میسل‌های پلیمری می‌پردازد. کاربردهای مختلفی از جمله در درمان بیماری های ریوی، اختلالات عصبی، سرطان ها و موارد دیگر پوشش داده شده است. این کتاب همچنین نگاهی به پیامدهای سم‌شناسی نانوترانوستیک‌ها، که جنبه‌ای مهم از هر نوع درمان یا درمانی است، می‌اندازد. طراحی و کاربردهای نانوداروهای ترانوستیک تصویری از آخرین هنر ارائه می دهد و برای دانشمندان مواد، مهندسان زیست پزشکی و دانشمندان داروسازی که علاقه مند به نانوتکنولوژی و ترانوستیک هستند، استفاده خواهد شد. چالش‌ها، هزینه‌ها، مزایا و پیامدهای سم‌شناسی نانوترانوستیک‌ها را بررسی می‌کند طیف وسیعی از نانوداروها و طراحی آنها، از جمله لیپوزوم‌ها، نانوهیدرژل‌ها، نانوکوکلیت‌ها و موارد دیگر را بررسی می‌کند.


توضیحاتی درمورد کتاب به خارجی

Design and Applications of Theranostic Nanomedicines reviews the composition and design of various nanomedicines for theranostic applications, helping readers to make informed decisions when exploring novel treatments for disease. This book introduces readers to theranostic nanostructures as nanomedicines, beginning with a balanced look at the associated challenges, costs and benefits. The next section goes on to detail a range of different theranostic nanomedicines and their design, from nanodispersions and nanogels to exosomes and polymeric micelles. A variety of applications is covered, including in the treatment of pulmonary diseases, neurological disorders, cancers and more. The book also takes a look at the toxicological implications of nanotheranostics, an important aspect of any therapy or treatment. Design and Applications of Theranostic Nanomedicines provides a snapshot of the state-of-the-art, and will be of use to materials scientists, biomedical engineers and pharmaceutical scientists with an interest in nanotechnology and theranostics. Explores the challenges, costs, benefits and toxicological implications of nanotheranostics Reviews a range of nanomedicines and their design, including liposomes, nanohydrogels, nanocochleate and more Details a variety of applications, such as in drug delivery, neurological disorders, cardiovascular diseases and so on



فهرست مطالب

Design and Applications of Theranostic NanomedicinesWoodhead Publishing Series in BiomaterialsEdited bySomasree RayProfesso ...
Copyright
Dedication
List of contributors
Preface
1. Theranostic nanostructures as nanomedicines: benefits, costs, and future challenges
	1.1 Introduction
	1.2 Nanotechnology, nanoscale, and nanostructures
		1.2.1 Carbonaceous-based hybrid nanostructures
		1.2.2 Organic-based nanostructures
		1.2.3 Inorganic-based nanostructures
	1.3 Design of theranostic nanostructures as nanomedicines
		1.3.1 Therapeutic pay-loads
			1.3.1.1 Therapeutics
			1.3.1.2 Imaging
		1.3.2 Nanocarriers
			1.3.2.1 Polymeric nanoparticles and micelles
			1.3.2.2 Lipid nanovesicles
			1.3.2.3 Dendrimers
			1.3.2.4 Protein-based nanostructures
			1.3.2.5 Metallic nanostructures
			1.3.2.6 Ceramic nanostructures
			1.3.2.7 Nanocomposites
			1.3.2.8 Nanoconjugates
	1.4 Applications of theranostic nanostructures as nanomedicines
	1.5 Benefits and costs of theranostic nanostructures as nanomedicines
	1.6 Challenges of theranostic nanostructures as nanomedicines
	1.7 Conclusion
	References
2. Theranostic nanogels: design and applications
	2.1 Introduction
	2.2 Nanogels
	2.3 Theranostic nanogels
	2.4 Designs of theranostic nanogels
		2.4.1 Optical imaging
		2.4.2 Magnetic resonance imaging
		2.4.3 Ultrasound imaging
		2.4.4 Photoacoustic imaging
		2.4.5 Positron emission tomography
		2.4.6 X-ray computed tomography
		2.4.7 Multimodal imaging
	2.5 Conclusion
	Acknowledgments
	References
3. Exosomes: a novel tool for diagnosis and therapy
	3.1 Introduction
	3.2 Exosomes
	3.3 Biological functions of exosomes
	3.4 Exosomes as biomarkers of diseases
		3.4.1 Targeted exosomes for cancer therapy
	3.5 Exosomes as therapeutic tools in other pathologies
	3.6 Exosomes as a novel tool for diagnosis
	References
4. Engineered liposomes as drug delivery and imaging agents
	4.1 Introduction
	4.2 Liposomes and their classifications
	4.3 Preparation of liposomes
		4.3.1 Conventional methods
			4.3.1.1 Hydration method
			4.3.1.2 Electroformation method
			4.3.1.3 Bulk methods
		4.3.2 Novel methods
			4.3.2.1 Recent hydration techniques
				Heating method
				Curvature tuning method
				Packed bed-assisted hydration method
				Localized IR heating method
				Osmotic shock method
				Spray drying method
				Freeze drying and lyophilization method
				Gel assisted hydration
				Hydration on glass beads
			4.3.2.2 Recent electroformation method
				Modified electroformation method
				Electroformation in microfluidics
			4.3.2.3 Recent bulk methods
				Membrane contractor
				Microfluidics
				Supercritical fluids technique
				Stationary phase interdiffusion (SPI) method
				Modified detergent depletion technique
	4.4 Rationale for the development of engineered liposomes
		4.4.1 Engineered liposomes
			4.4.1.1 PEGylated liposomes
			4.4.1.2 Engineering of liposomes with peptides
			4.4.1.3 Engineering of liposomes with antibody
			4.4.1.4 Engineering of liposomes with aptamers
			4.4.1.5 Engineering of liposomes with small molecules
			4.4.1.6 Biopolymer-coated liposomes
			4.4.1.7 Radiolabeled liposomes
	4.5 Engineered liposomes in drug delivery
	4.6 Engineered liposomes in imaging
	4.7 Theranostic engineered liposomes
	4.8 Challenges and limitations of engineered liposomes as nanotheranostics
	4.9 Conclusion and future perspective
	References
5. Polymeric micelles for theranostic uses
	5.1 Introduction
	5.2 Advantages and disadvantages of polymeric micelle
		5.2.1 Advantages
			5.2.1.1 Disadvantages
	5.3 Different types of polymer micelle as carrier systems used for the delivery of drugs
		5.3.1 Micelle forming polymer-drug conjugates
		5.3.2 Polymeric micellar nanoparticles
			5.3.2.1 Dialysis method
			5.3.2.2 o/w emulsion method
			5.3.2.3 Solvent evaporation method
			5.3.2.4 Cosolvent evaporation method
			5.3.2.5 Freeze-drying method
		5.3.3 Polyion complex micelle
	5.4 Mechanism of drug release from polymeric micelles
	5.5 Pharmaceutical applications of polymeric micelle
		5.5.1 Use of polymeric micelle as a solubilizing agent for water-insoluble drugs
		5.5.2 Passive targeting of drug-using polymer micelle
		5.5.3 Active targeting of drugs using polymeric micelle
	5.6 Conclusion
	References
6. Dendrimers: an effective drug delivery and therapeutic approach
	6.1 Introduction
	6.2 Synthesis procedure of dendrimer structure
		6.2.1 Convergent and divergent method
		6.2.2 Hypermonomer method/branched monomer synthesis approach
		6.2.3 Lego chemistry
		6.2.4 Click chemistry
		6.2.5 Orthogonal synthesis
		6.2.6 Double exponential
	6.3 Dendrimers in drug delivery
	6.4 Advancement of dendrimer-based drug delivery in biomedical field
		6.4.1 Progress of dendrimer-based research against cancer
		6.4.2 Dendrimers in pharmaceutical preparations for brain delivery
		6.4.3 Dendrimer-based drug delivery in topical preparations
	6.5 Conclusion
	Acknowledgments
	References
7. Nanocochleates: A novel lipid-based nanocarrier system for drug delivery
	7.1 Introduction
	7.2 History of the development of nanocochleates
	7.3 Chemistry and mechanism of self-assembly of nanocochleates
	7.4 Components of nanocochleates
		7.4.1 Lipids
		7.4.2 Cations
		7.4.3 Drugs
	7.5 Routes of administration
	7.6 Advantages of nanocochleate-based drug delivery system
	7.7 Limitations of nanocochleate-based drug delivery system
	7.8 Mechanism of action of nanocochleate-based drug delivery system
		7.8.1 Absorption after oral administration
		7.8.2 Delivery to targeted cell
			7.8.2.1 Delivery after phagocytosis
			7.8.2.2 Delivery by cell membrane fusion
	7.9 Method of nanocochleates preparation
		7.9.1 Trapping method
		7.9.2 Hydrogel method
		7.9.3 Liposomes before cochleates (LC) dialysis method
		7.9.4 Direct calcium (DC) dialysis method
		7.9.5 Binary aqueous-aqueous emulsion system
		7.9.6 Solvent drip method
	7.10 Stabilization of nanocochleates
	7.11 Characterization of nanocochleates
		7.11.1 Particle size determination
		7.11.2 Density
		7.11.3 Drug content
		7.11.4 Encapsulation efficiency (EE)
		7.11.5 Stability study
		7.11.6 Specific surface area
		7.11.7 Surface charge determination
		7.11.8 Cochleates-cell interaction
		7.11.9 In vitro release study
		7.11.10 Surface morphology study
		7.11.11 Structural study of nanocochleates
		7.11.12 Differential scanning calorimetry study
		7.11.13 Determination of surface hydrophobicity of nanocochleates
	7.12 Applications of nanocochleate-based drug delivery system
		7.12.1 Delivery of antifungal agents
		7.12.2 Delivery of antibacterial agents
		7.12.3 ApoA1 formulation
		7.12.4 Delivery of essential oils
		7.12.5 Delivery of nutraceuticals
		7.12.6 Delivery of vaccines
		7.12.7 Gene delivery
		7.12.8 Delivery of factor VIII
		7.12.9 Delivery of insulin
		7.12.10 Delivery of anti-inflammatory agents
		7.12.11 Topical drug delivery
		7.12.12 Delivery of anticancer agents
		7.12.13 Delivery of andrographolide (AN)
		7.12.14 Delivery of resveratrol (RSV)
		7.12.15 Delivery of artemisinin (ART)
		7.12.16 Delivery of cyclosporine A (CsA)
	7.13 Commercial status of nanocochleates
	7.14 Conclusions and future perspectives
	References
8. Theranostic applications of nanoemulsions in pulmonary diseases
	8.1 Introduction
		8.1.1 Nanoemulsions formulation
		8.1.2 Nanoemulsions fabrication
			8.1.2.1 High-energy emulsification techniques
				8.1.2.1.1 Microfluidization
				8.1.2.1.2 High-pressure homogenizer
				8.1.2.1.3 Ultrasonication
			8.1.2.2 Low-energy emulsification techniques
				8.1.2.2.1 Phase inversion technique
				8.1.2.2.2 Solvent displacement method
				8.1.2.2.3 Self-emulsification method
		8.1.3 Characterization of NEs
			8.1.3.1 Characterization of NE aerosols
		8.1.4 Generations of NEs
			8.1.4.1 First-generation NEs
			8.1.4.2 Second-generation NEs
			8.1.4.3 Third-generation NEs
		8.1.5 General anatomy of the respiratory system
	8.2 Theranostic applications of NEs
		8.2.1 Combined theranostic NEs
	8.3 NEs-based drug delivery systems
		8.3.1 NEs-based drug delivery systems for cancer treatment
		8.3.2 NEs-based drug delivery systems for bacterial diseases
		8.3.3 NEs-based drug delivery systems for fungal diseases
		8.3.4 NEs-based drug delivery systems for bacterial and fungal diseases
		8.3.5 NEs-based drug delivery systems for pulmonary arterial hypertension
		8.3.6 NEs-based systems for antibodies delivery
		8.3.7 NEs-based drug delivery systems for acute lung injury
	8.4 NEs-based diagnostics
		8.4.1 NEs-based systems for cancer detection
		8.4.2 NEs-based systems for thrombosis detection
	8.5 Clearance of NEs
	8.6 Advantages and disadvantages of NEs
		8.6.1 Advantages of NEs [12,27,235,236]
		8.6.2 Disadvantages of NEs [27,235,236]
	8.7 Conclusion
	Abbreviations
	References
	Further reading
9. Polymeric nanoparticles as tumor-targeting theranostic platform
	9.1 Introduction
	9.2 Definition of nanothranostics with some examples
	9.3 Significance of nanotheranostic and comparison between nanotheranostic and nanotherapeutics
	9.4 Advantages of polymeric nanoparticles for tumor targeting
	9.5 Nanoparticles for imaging, diagnosis, and therapy
	9.6 Different methods of tumor targeting
		9.6.1 Passive targeting
		9.6.2 Active targeting
		9.6.3 Physical targeting
	9.7 Polymeric nanomedicines in a clinical trial
	9.8 Future prospect
	9.9 Conclusion
	References
10. Site-specific theranostic uses of stimuli responsive nanohydrogels
	10.1 Introduction
	10.2 Classification of nano hydrogel
	10.3 Stimulus responsive nanogels
		10.3.1 Single stimuli responsive nanogels
			10.3.1.1 pH sensitive nanogels
			10.3.1.2 Temperature sensitive nanogels
			10.3.1.3 Redox responsive nanogels
			10.3.1.4 Light responsive nanogels
			10.3.1.5 Magnetic field responsive nanogels
		10.3.2 Dual-stimuli responsive nano hydrogel
			10.3.2.1 pH and temperature-sensitive nanogel
			10.3.2.2 pH and redox sensitive nanogel
	10.4 Applications of nanogels in drug delivery
	10.5 Toxicity of stimulus sensitive nanogels
	10.6 Conclusion
	References
11. Ligand appended theranostic nanocarriers for targeted blood–brain barrier
	11.1 Introduction
	11.2 Blood–brain barrier
		11.2.1 What is BBB?
			11.2.1.1 Cellular transport channels
			11.2.1.2 Essential features of the BBB
			11.2.1.3 Cells of the BBB
				11.2.1.3.1 Endothelial cells
				11.2.1.3.2 Astrocytes
				11.2.1.3.3 Pericytes
				11.2.1.3.4 Basement membrane
				11.2.1.3.5 Neurons
		11.2.2 Physiological properties of BBB
			11.2.2.1 Regulation of the BBB formation and homeostasis
			11.2.2.2 Regulation of barrier properties during angiogenesis
			11.2.2.3 Regulation of the BBB by pericytes
			11.2.2.4 Regulation of the BBB by astrocytes
		11.2.3 Crossing the BBB
			11.2.3.1 Passive permeability
			11.2.3.2 Carrier-mediated transport
			11.2.3.3 Active efflux transport
			11.2.3.4 Receptor-mediated transport
			11.2.3.5 Adsorption-mediated transport
	11.3 Ligand appended nanocarriers
		11.3.1 Types of nanocarriers
			11.3.1.1 Folate
			11.3.1.2 Transferrin
			11.3.1.3 Aptamers
			11.3.1.4 Antibodies
			11.3.1.5 Peptides
		11.3.2 Preparation methods
			11.3.2.1 Covalent coupling
			11.3.2.2 Noncovalent coupling
		11.3.3 Physicochemical properties
			11.3.3.1 Size and shape of the nanomaterials
			11.3.3.2 Surface charge of nanoparticles
			11.3.3.3 Surface chemistry of nanoparticles
	11.4 Applications of ligand appended nanocarriers
	11.5 Underlying challenges and future prospects
	References
12. Nanotheranostics in CNS Malignancy
	12.1 Introduction
	12.2 Glioblastoma
	12.3 Blood brain barrier (BBB)
	12.4 Blood brain tumor barrier (BBTB)
	12.5 Nanotheranostics
		12.5.1 Gold nanoparticles (AuNPs)
		12.5.2 Quantum dots (QDs)
		12.5.3 Magnetic nanoparticles
		12.5.4 Mesosporous silica nanoparticles (MSNs)
		12.5.5 Solid lipid nanoparticles (SLNs)
		12.5.6 Dendrimers
		12.5.7 Liposomes
	12.6 Conclusion
	References
13. Application of nanotheranostics in cancer
	13.1 Introduction
	13.2 Nanomedicines as cancer theranostics
		13.2.1 Super paramagnetic iron oxide nanoparticles (SPIONs)
		13.2.2 Gold nanotheranostics
		13.2.3 Application of quantum dots (QDs) as nanotheranostics
		13.2.4 Applications of carbon nanotubes (CNTs), carbon dots (CDs), and graphene as nanotheranostics
		13.2.5 Micelles
		13.2.6 Liposomes nanotheranostics
	13.3 Emergence and scope of nanotheranostics
	13.4 Conclusion
	References
14. Self-assembled protein nanoparticles for multifunctional theranostic uses
	14.1 Introduction
		14.1.1 Self-assembly of proteins
		14.1.2 Self-assembling protein nanoparticle (SAPN) morphologies
		14.1.3 SAPN applications
			14.1.3.1 Bionanotechnology applications
			14.1.3.2 Improving vaccine immunogenicity with a new platform
			14.1.3.3 Vaccines
			14.1.3.4 Malaria
			14.1.3.5 SARS
			14.1.3.6 Toxoplasmosis
			14.1.3.7 Influenza
			14.1.3.8 SAPNs for HIV-1 vaccine development
	References
15. Nanotheranostics: The toxicological implications
	15.1 Nanotheranostics: A tool for personifying medicine
	15.2 Nanotheranostics: Bridging a therapeutic notch
	15.3 Toxicity in nanotheranostics
	15.4 Hazards associated with nanotheranostics
	15.5 Factors influencing toxic responses to nanotheranostic agents
		15.5.1 Surface area and size
		15.5.2 Surface characteristics
		15.5.3 Confounding effects of impurities and stability
		15.5.4 Route of exposure
	15.6 Toxic concern of materials commonly used in nanotheranostics
		15.6.1 Gold nanoparticles
		15.6.2 Copper sulfide nanoparticles
		15.6.3 Fullerene
		15.6.4 Dendrimers
		15.6.5 Quantum dots
	15.7 Silica
	15.8 Toxicity in nanotheranostics: the mechanistic basis
	15.9 Toxicity evaluation of nanotheranostic agents: testing systems in vitro and in vivo
	15.10 Conclusion
	References
Index
A
B
C
D
E
F
G
H
I
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z




نظرات کاربران