ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Design and Analysis of Thermal Systems

دانلود کتاب طراحی و تحلیل سیستم های حرارتی

Design and Analysis of Thermal Systems

مشخصات کتاب

Design and Analysis of Thermal Systems

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9780367502546, 9781003049272 
ناشر: CRC Press 
سال نشر: 2023 
تعداد صفحات: 423
[424] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 29 Mb 

قیمت کتاب (تومان) : 31,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Design and Analysis of Thermal Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب طراحی و تحلیل سیستم های حرارتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب طراحی و تحلیل سیستم های حرارتی




توضیحاتی درمورد کتاب به خارجی

The proposed book bridges the gap between the theories of thermal science and design of practical thermal systems by discussing thermodynamic design principle, mathematical and CFD tools that will enable students as well as professional engineers to quickly analyse and design practical thermal systems



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Contents
Authors
Chapter 1: Introduction
	1.1. Definition and Importance
		1.1.1. Design versus Analysis
		1.1.2. Synthesis for Design
		1.1.3. Selection versus Design
	1.2. Thermal System Design Aspects
		1.2.1. Environmental Aspects
		1.2.2. Safety Issues
	1.3. Reliability, Availability and Maintainability (RAM)
	1.4. Background Information and Data Sources
	1.5. Workable, Optimal and Nearly Optimal Designs
	1.6. Stages of the Design Process
		1.6.1. DFX Strategies
		1.6.2. Formulation of the Design Problem
			1.6.2.1. Requirements
			1.6.2.2. Given Parameters
			1.6.2.3. Design Variables
			1.6.2.4. Constraints and Limitations
			1.6.2.5. Safety, Environmental and Other Considerations
	1.7. Conceptual Designs
		1.7.1. Modification in the Design of Existing Systems
		1.7.2. Steps in the Design Process
			1.7.2.1. Physical Systems
			1.7.2.2. Modeling
			1.7.2.3. Simulations
			1.7.2.4. Acceptable Design Evaluations
			1.7.2.5. Optimal Designs
			1.7.2.6. Safety Features, Automation and Control
			1.7.2.7. Communicating the Design
		1.7.3. Computer-Aided Designs
	Problems
Chapter 2: Modeling and Simulation Basics
	2.1. Introduction
	2.2. Types of Models
		2.2.1. Analog Models
		2.2.2. Mathematical Models
		2.2.3. Physical Models
		2.2.4. Numerical Models
	2.3. Mathematical Modeling
		2.3.1. Transient/Steady State
			2.3.1.1. Case 1: τc→∞ (Large τc)
			2.3.1.2. Case 2: τc << τr
			2.3.1.3. Case 3: τc >> τr
			2.3.1.4. Case 4: Periodic Processes
			2.3.1.5. Case 5: Transient
		2.3.2. Number of Spatial Dimensions
		2.3.3. Lumped Mass Approximation
		2.3.4. Simplification of Boundary Conditions
		2.3.5. Negligible Effects
		2.3.6. Idealizations
		2.3.7. Material Properties
	2.4. Sample Mathematical Modeling Examples
		2.4.1. Storage Tank of Solar Collector
			2.4.1.1. Lumped Mass Approximation
			2.4.1.2. Material Properties
			2.4.1.3. Spatial Dimensions
			2.4.1.4. Simplifications
			2.4.1.5. Governing Equation
			2.4.1.6. Dimensionless Parameters
			2.4.1.7. Dimensionless Initial/Boundary Conditions
		2.4.2. An Electric Heat Treatment Furnace
			2.4.2.1. Initial and Boundary Conditions
	2.5. Dimensional Analysis
		2.5.1. Example of an Electronic Device
			2.5.1.1. Non-Dimensionalization
	2.6. Curve Fitting
		2.6.1. Least Square Method
		2.6.2. Two Independent Variable Cases
			2.6.2.1. Curve-Fitting Procedure
	2.7. Numerical Modeling
		2.7.1. Accuracy and Validation
	2.8. Importance of Simulation
	2.9. Different Classes of Numerical Simulation
		2.9.1. Dynamic or Steady State
		2.9.2. Continuous or Discrete
		2.9.3. Deterministic or Stochastic
	2.10. Flow of Information
	2.11. Block Representation
		2.11.1. Information Flow Diagram
	2.12. Initial Design
	2.13. Iterative Redesign for Convergence
	2.14. Sample Thermal System Design Examples
		2.14.1. A Piping Network Problem
		2.14.2. A Gas Turbine Problem
		2.14.3. Fin Design
			2.14.3.1. Multiple Fins
			2.14.3.2. An Example of a Fin Problem
	Problems
	References
Chapter 3: Exergy for Design
	3.1. Introduction
		3.1.1. Definition of Exergy
		3.1.2. Environment
		3.1.3. Exergy Components
			3.1.3.1. Physical Exergy
			3.1.3.2. Dead States
			3.1.3.3. Chemical Exergy
	3.2. Exergy Balance Equation
		3.2.1. Closed System
			3.2.1.1. Energy Balance of the Closed System
			3.2.1.2. Entropy Balance of the Closed System
		3.2.2. Open System
			3.2.2.1. Exergy Transfers at Inlets and Outlets
		3.2.3. Standard Chemical Exergy of Gases and Gas Mixtures
		3.2.4. Standard Chemical Exergy of Fuels
	3.3. Exergy Destruction and Exergy Loss
		3.3.1. Exergy Destruction through Heat Transfer and Friction
			3.3.1.1. Thermodynamic Average Temperature
			3.3.1.2. Overview
		3.3.2. Exergy Destruction and Exergy Loss Ratios
		3.3.3. Exergetic Efficiency
			3.3.3.1. How Do We Distinguish between Fuel and Product?
			3.3.3.2. Compressor, Pump or Fan
			3.3.3.3. Turbine or Expander
			3.3.3.4. Heat Exchanger
			3.3.3.5. Case 1
			3.3.3.6. Case 2
			3.3.3.7. Mixing Unit
			3.3.3.8. Gasifier or Combustion Chamber
			3.3.3.9. Boiler
			3.3.3.10. Guidelines for Defining Exergetic Efficiency
			3.3.3.11. Subsystem A
			3.3.3.12. Subsystem B
	3.4. Exergy Analysis of a Gas Turbine-Based Power Plant
		3.4.1. Guidelines for Evaluating and Improving Thermodynamic Effectiveness
		3.4.2. Additional Guidelines
	3.5. Exergy Analysis of a Heat Exchanger
		3.5.1. Area Constraint
		3.5.2. Volume Constraint
		3.5.3. Combined Area and Volume Constraint
		3.5.4. Unbalanced Heat Exchanger
		3.5.5. Counter-Flow Heat Exchanger
		3.5.6. Parallel Flow Heat Exchanger
	3.6. Exergy Analysis of a Refrigeration System
	3.7. Exergy Storage System
	3.8. Solar Air Collector
		3.8.1. Heat Transfer Coefficient
		3.8.2. Air Mass Flow Rate
			3.8.2.1. Energy and Exergy Efficiency
			3.8.2.2. Parametric Study
	3.9. Ocean Thermal Energy Conversion
		3.9.1. Hydrogen Production Using OTEC
			3.9.1.1. Energy Analysis
			3.9.1.2. Flat Plate Solar Collector
			3.9.1.3. Organic Rankine Cycle
			3.9.1.4. PEM Electrolyzer
			3.9.1.5. Energy Efficiency
			3.9.1.6. Exergy Efficiency
		3.9.2. Simulation Results
	Problems
	References
Chapter 4: Material Selection
	4.1. Material Properties
	4.2. Software
	4.3. Material Attributes
	4.4. Selection Strategies
		4.4.1. Material Indices
	4.5. Case Studies
		4.5.1. Case 1: Heat Sink Material
		4.5.2. Case 2: Material for Sensible Thermal Energy Storage
		4.5.3. Case 3: Phase Change Material for Cold Thermal Energy Storage
			4.5.3.1. Thermophysical Properties
			4.5.3.2. Kinetic Properties
			4.5.3.3. Chemical Properties
			4.5.3.4. Economics
		4.5.4. Case 4: Selection of Insulation Material
		4.5.5. Case 5: Heat Transfer Fluids for Solar Power Systems
	4.6. Summary
	Problems
	References
Chapter 5: Heat Exchangers
	5.1. Introduction
	5.2. Classification of Heat Exchanger
	5.3. Overall Heat Transfer Coefficient
	5.4. Log Mean Temperature Difference (LMTD)
	5.5. The ε–NTU Method
	5.6. Variable Overall Heat Transfer Coefficient
	5.7. Heat Exchanger Thermal Design
		5.7.1. Rating Problem
		5.7.2. Sizing Problem
	5.8. Forced Convection Correlation for Single–Phase Side of a Heat Exchanger
	5.9. Effect of Variable Properties
		5.9.1. For Liquids
		5.9.2. For Gases
	5.10. Flow in Smooth Straight Non-Circular Ducts
	5.11. Heat Transfer from Smooth Tube Bundles
	5.12. Pressure Drop in Tube Bundles in Cross-Flow
	5.13. Shell and Tube Heat Exchangers
	5.14. Tube Passes
	5.15. Tube Layout
	5.16. Baffle Type
	5.17. Tube-Side Pressure Drop
	5.18. Bell–Delaware Method
		5.18.1. Shell-Side Heat Transfer Coefficient
		5.18.2. Shell-Side Pressure Drop
	5.19. Kern Method
		5.19.1. Shell-Side Heat Transfer Coefficient
		5.19.2. Shell-Side Pressure Drop
	5.20. Basic Design Process
	5.21. Preliminary Design Estimation
	5.22. Compact Heat Exchanger Design
		5.22.1. Heat Transfer and Pressure Drop
		5.22.2. Pressure Drop for Finned-Tube Exchangers
		5.22.3. Pressure Drop for Plate-Fin Exchangers
	5.23. Optimization of Heat Exchangers
	Problems
	References
Chapter 6: Piping Flow
	6.1. Introduction
	6.2. Energy Equations
		6.2.1. Minor Losses
		6.2.2. Graphics Symbol Conventions
		6.2.3. General Considerations
		6.2.4. Resistance Analogy
		6.2.5. Classification of Pumps
		6.2.6. Pump Selection
	6.3. Pump Performance Using Dimensional Analysis
		6.3.1. Dimensional Analysis
		6.3.2. Specific Speed
	6.4. Pump Curve for Viscous Fluid
		6.4.1. Procedure to Obtain the Correction Factor and Pump Curve for Viscous Fluid
	6.5. Effective Pump Performance Curve
		6.5.1. Computer Implementation
			6.5.1.1. Pumps in Series
			6.5.1.2. Pumps in Parallel
	6.6. System Characteristics
	6.7. Pump Placement
		6.7.1. Cavitation
		6.7.2. Net Positive Suction Head
		6.7.3. Recirculation Problem
	6.8. Suction-Specific Speed
	6.9. Net Positive Suction Head Available
	6.10. Uncertainty Effect on Pump Selection
	6.11. Uncertainty Analysis Procedure
		6.11.1. Piping Network Design
	6.12. Piping System Design
		6.12.1. Hardy Cross Method
		6.12.2. Hazen–Williams Coefficient
		6.12.3. Basic Idea
		6.12.4. Correction Factor
		6.12.5. Implementation Procedure
	6.13. Generalized Hardy Cross Analysis
		6.13.1. Block Diagram
	Problems
	References
Chapter 7: Artificial Intelligence for Thermal Systems
	7.1. Introduction
	7.2. Expert System
		7.2.1. Advantages of Expert Systems
		7.2.2. Disadvantages of Expert Systems
		7.2.3. Structure of Expert Systems
		7.2.4. An Example for Feed Water Pump Selection
	7.3. Artificial Neural Network (ANN) Overview
		7.3.1. Structure of ANNs
		7.3.2. Training of ANNs
	7.4. ANNs for Heat Exchanger Analysis
	7.5. ANNs for a Thermophysical Property Database
	7.6. Physics Informed ANNs
	7.7. ANNs for Dynamic Thermal Systems
	7.8. Summary
	References
Chapter 8: Numerical Linear Algebra
	8.1. Bisection Method
		8.1.1. Convergence of Bisection Method
	8.2. Newton–Raphson Method
	8.3. Eigenvalues and Eigenvectors
	8.4. Power Iterations
	8.5. Convergence
	8.6. Inverse Power Iterations
	8.7. Curve Fitting
	8.8. Fitting of a Straight Line
	8.9. Fitting of a Polynomial
	8.10. Error Estimation
	8.11. Solution of Algebraic Equations
	8.12. Gaussian Elimination
		8.12.1. Forward Elimination
		8.12.2. Back Substitution
		8.12.3. How to Improve the Solution
	8.13. Jacobi and Gauss–Seidel Iterations
		8.13.1. Vector and Matrix Norms
		8.13.2. Convergence of the Jacobi Iteration
		8.13.3. Gauss–Seidel Iteration
	8.14. Extension to Nonlinear Systems
Chapter 9: Ordinary Differential Equations
	9.1. Introduction
	9.2. Euler Method
	9.3. Runge–Kutta Method
	9.4. Higher-Order IVP
	9.5. Boundary Value Problems: Shooting Method
	9.6. Boundary Value Problems: Finite Difference Method
Chapter 10: Numerical Differentiation and Integration
	10.1. Introduction
	10.2. Numerical Differentiation
	10.3. Nonuniform Grid
	10.4. Double Derivative
	10.5. Numerical Integration: Newton–Cotes Formulas
		10.5.1. Trapezoidal Rule
		10.5.2. Simpson’s One-Third Rule
Chapter 11: Partial Differential Equations
	11.1. Introduction
	11.2. Classification
		11.2.1. Marching Problem
		11.2.2. Equilibrium Problem
		11.2.3. Eigenvalue Problem
	11.3. Second-Order Linear PDE
		11.3.1. Parabolic Problem
		11.3.2. Hyperbolic Problem
		11.3.3. Elliptic Problem
	11.4. One-Dimensional Transient Diffusion
	11.5. Numerical Schemes
		11.5.1. Explicit Scheme
		11.5.2. Implicit Scheme
		11.5.3. Crank–Nicolson Scheme
	11.6. Stability and Consistency
		11.6.1. Round-Off Error
		11.6.2. Truncation Error
		11.6.3. Consistency
		11.6.4. Stability
	11.7. Two-Dimensional Transient Diffusion
		11.7.1. Explicit Scheme
		11.7.2. Implicit and Crank–Nicolson Schemes
	11.8. Elliptic Equations
		11.8.1. Discretization
		11.8.2. Solution Procedure
		11.8.3. Pseudo-Transient Approach
Chapter 12: Computational Fluid Dynamics
	12.1. Introduction
		12.1.1. Non-Dimensionalization
	12.2. Stream Function, Vorticity (ψ – ω) Formulation
		12.2.1. Stream Function
		12.2.2. Vorticity
		12.2.3. Vorticity Transport Equation
		12.2.4. Solution Strategy
	12.3. Primitive Variable Formulation
Chapter 13: Electrochemical Systems
	13.1. Introduction
		13.1.1. Fuel Cells
		13.1.2. Batteries and Fuel Cells
	13.2. Fuel Cell Thermodynamics
		13.2.1. Reversible Voltage
		13.2.2. Reversible Efficiency
	13.3. Classifications
		13.3.1. PEMFC
		13.3.2. SOFC
	13.4. Losses in Fuel Cells
	References
Chapter 14: Inverse Problems
	14.1. Introduction
	14.2. Inverse Heat Conduction: Conjugate-Gradient Approach
		14.2.1. Sensitivity Problem
		14.2.2. Adjoint Problem
		14.2.3. Descent Direction and Step Size
	14.3. Regularization and Stopping Criterion
		14.3.1. Discrepancy Principle
		14.3.2. Additional Measurement Approach
		14.3.3. Smoothing of Experimental Data
	14.4. Complete Algorithm
	References
Appendix A: Thermophysical Properties (Working Fluids)
Appendix B: Thermophysical Properties (Exergy Calculation)
Appendix C: Thermophysical Properties (Emissivity)
Appendix D: Standard Pipe Dimension
Appendix E: Pump Performance Curve
Appendix F: Minor Loss Coefficient
Appendix G: Sample Project Topics
Index




نظرات کاربران