دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: آمار ریاضی ویرایش: 8th نویسندگان: Douglas C. Montgomery سری: ISBN (شابک) : 9781118146927 ناشر: Wiley سال نشر: 2013 تعداد صفحات: 757 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 مگابایت
کلمات کلیدی مربوط به کتاب طراحی و تجزیه و تحلیل آزمایشات: آمار، طراحی آزمایشات
در صورت تبدیل فایل کتاب Design and Analysis of Experiments به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی و تجزیه و تحلیل آزمایشات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ویرایش هشتم این متن پرفروش همچنان به دانشجویان ارشد و فارغ التحصیل در مهندسی، بازرگانی و آمار - و همچنین متخصصان شاغل - برای طراحی و تجزیه و تحلیل آزمایشهایی برای بهبود کیفیت، کارایی و عملکرد سیستمهای کاری کمک میکند. ویرایش هشتم طراحی و تجزیه و تحلیل آزمایشها پوشش جامع خود را با موارد زیر حفظ میکند: مثالها، تمرینها و مسائل جدید (از جمله در زمینههای بیوشیمی و بیوتکنولوژی). موضوعات و مشکلات جدید در حوزه سطح پاسخ. موضوعات جدید در طراحی تودرتو و اسپلیت پلات. و روش حداکثر درستنمایی باقیمانده اکنون در سراسر کتاب تاکید شده است. با تداوم تمرکز بر استفاده از رایانه، این نسخه شامل نمونه های نرم افزاری است که از چهار برنامه غالب در این زمینه گرفته شده است: Design-Expert، Minitab، JMP و SAS.
The eighth edition of this best selling text continues to help senior and graduate students in engineering, business, and statistics-as well as working practitioners-to design and analyze experiments for improving the quality, efficiency and performance of working systems. The eighth edition of Design and Analysis of Experiments maintains its comprehensive coverage by including: new examples, exercises, and problems (including in the areas of biochemistry and biotechnology); new topics and problems in the area of response surface; new topics in nested and split-plot design; and the residual maximum likelihood method is now emphasized throughout the book. Continuing to place a strong focus on the use of the computer, this edition includes software examples taken from the four most dominant programs in the field: Design-Expert, Minitab, JMP, and SAS.
Content: Preface --
1 Introduction --
1.1 Strategy of Experimentation --
1.2 Some Typical Applications of Experimental Design --
1.3 Basic Principles --
1.4 Guidelines for Designing Experiments --
1.5 A Brief History of Statistical Design --
1.6 Summary: Using Statistical Techniques in Experimentation --
1.7 Problems --
2 Simple Comparative Experiments --
2.1 Introduction --
2.2 Basic Statistical Concepts --
2.3 Sampling and Sampling Distributions --
2.4 Inferences About the Differences in Means, Randomized Designs --
2.5 Inferences About the Differences in Means, Paired Comparison Designs --
2.6 Inferences About the Variances of Normal Distributions --
2.7 Problems --
3 Experiments with a Single Factor: The Analysis of Variance --
3.1 An Example --
3.2 The Analysis of Variance --
3.3 Analysis of the Fixed Effects Model --
3.4 Model Adequacy Checking --
3.5 Practical Interpretation of Results --
3.6 Sample Computer Output --
3.7 Determining Sample Size --
3.8 Other Examples of Single-Factor Experiments --
3.9 The Random Effects Model --
3.10 The Regression Approach to the Analysis of Variance --
3.11 Nonparametric Methods in the Analysis of Variance --
3.12 Problems --
4 Randomized Blocks, Latin Squares, and Related Designs --
4.1 The Randomized Complete Block Design --
4.2 The Latin Square Design --
4.3 The Graeco-Latin Square Design --
4.4 Balanced Incomplete Block Designs --
4.5 Problems --
5 Introduction to Factorial Designs. 5.1 Basic Definitions and Principles --
5.2 The Advantage of Factorials --
5.3 The Two-Factor Factorial Design --
5.4 The General Factorial Design --
5.5 Fitting Response Curves and Surfaces --
5.6 Blocking in a Factorial Design --
5.7 Problems --
6 The 2k Factorial Design --
6.1 Introduction --
6.2 The 22 Design --
6.3 The 23 Design --
6.4 The General 2k Design --
6.5 A Single Replicate of the 2k Design --
6.6 Additional Examples of Unreplicated 2k Design --
6.7 2k Designs are Optimal Designs --
6.8 The Addition of Center Points to the 2k Design --
6.9 Why We Work with Coded Design Variables --
6.10 Problems --
7 Blocking and Confounding in the 2k Factorial Design --
7.1 Introduction --
7.2 Blocking a Replicated 2k Factorial Design --
7.3 Confounding in the 2k Factorial Design --
7.4 Confounding the 2k Factorial Design in Two Blocks --
7.5 Another Illustration of Why Blocking Is Important --
7.6 Confounding the 2k Factorial Design in Four Blocks --
7.7 Confounding the 2k Factorial Design in 2p Blocks --
7.8 Partial Confounding --
7.9 Problems --
8 Two-Level Fractional Factorial Designs --
8.1 Introduction --
8.2 The One-Half Fraction of the 2k Design --
8.3 The One-Quarter Fraction of the 2k Design --
8.4 The General 2k_p Fractional Factorial Design --
8.5 Alias Structures in Fractional Factorials and other Designs --
8.6 Resolution III Designs --
8.7 Resolution IV and V Designs --
8.8 Supersaturated Designs --
8.9 Summary --
8.10 Problems. 9 Additional Design and Analysis Topics for Factorial and Fractional Factorial Designs --
9.1 The 3k Factorial Design --
9.2 Confounding in the 3k Factorial Design --
9.3 Fractional Replication of the 3k Factorial Design --
9.4 Factorials with Mixed Levels --
9.5 Nonregular Fractional Factorial Designs --
9.6 Constructing Factorial and Fractional Factorial Designs Using an Optimal Design Tool --
9.7 Problems --
10 Fitting Regression Models --
10.1 Introduction --
10.2 Linear Regression Models --
10.3 Estimation of the Parameters in Linear Regression Models --
10.4 Hypothesis Testing in Multiple Regression --
10.5 Confidence Intervals in Multiple Regression --
10.6 Prediction of New Response Observations --
10.7 Regression Model Diagnostics --
10.8 Testing for Lack of Fit --
10.9 Problems --
11 Response Surface Methods and Designs --
11.1 Introduction to Response Surface Methodology --
11.2 The Method of Steepest Ascent --
11.3 Analysis of a Second-Order Response Surface --
11.4 Experimental Designs for Fitting Response Surfaces --
11.5 Experiments with Computer Models --
11.6 Mixture Experiments --
11.7 Evolutionary Operation --
11.8 Problems --
12 Robust Parameter Design and Process Robustness Studies --
12.1 Introduction --
12.2 Crossed Array Designs --
12.3 Analysis of the Crossed Array Design --
12.4 Combined Array Designs and the Response Model Approach --
12.5 Choice of Designs --
12.6 Problems --
13 Experiments with Random Factors. 13.1 Random Effects Models --
13.2 The Two-Factor Factorial with Random Factors --
13.3 The Two-Factor Mixed Model --
13.4 Sample Size Determination with Random Effects --
13.5 Rules for Expected Mean Squares --
13.6 Approximate F Tests --
13.7 Some Additional Topics on Estimation of Variance Components --
13.8 Problems --
14 Nested and Split-Plot Designs --
14.1 The Two-Stage Nested Design --
14.2 The General m-Stage Nested Design --
14.3 Designs with Both Nested and Factorial Factors --
14.4 The Split-Plot Design --
14.5 Other Variations of the Split-Plot Design --
14.6 Problems --
15 Other Design and Analysis Topics. 15.1 Nonnormal Responses and Transformations --
15.2 Unbalanced Data in a Factorial Design --
15.3 The Analysis of Covariance --
15.4 Repeated Measures --
15.5 Problems --
Appendix --
Table I. Cumulative Standard Normal Distribution --
Table II. Percentage Points of the t Distribution --
Table III. Percentage Points of the _2 Distribution --
Table IV. Percentage Points of the F Distribution --
Table V. Operating Characteristic Curves for the Fixed Effects Model Analysis of Variance --
Table VI. Operating Characteristic Curves for the Random Effects Model Analysis of Variance --
Table VII. Percentage Points of the Studentized Range Statistic --
Table VIII. Critical Values for Dunnett\'s Test for Comparing Treatments with a Control --
Table IX. Coefficients of Orthogonal Polynomials --
Table X. Alias Relationships for 2k_p Fractional Factorial Designs with k 15 and n 64 --
Bibliography --
Index.
Abstract:A comprehensive guide to understanding AC machines with exhaustive simulation models to practice design and control Nearly seventy percent of the electricity generated worldwide is used by electrical motors. Read more...
نظرات کاربران
کتاب های مرتبط