دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: سایبرنتیک: هوش مصنوعی ویرایش: 1 نویسندگان: Eli Stevens, Luca Antiga, Thomas Viehmann سری: ISBN (شابک) : 1617295264, 9781617295263 ناشر: Manning Publications سال نشر: 2020 تعداد صفحات: 522 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 44 مگابایت
کلمات کلیدی مربوط به کتاب یادگیری عمیق با PyTorch: یادگیری ماشینی، شبکههای عصبی، یادگیری عمیق، پردازش تصویر، پایتون، شبکههای عصبی کانولوشنال، شبکههای متخاصم مولد، برنامههای کاربردی وب، تشخیص تصویر، استقرار، نزول گرادیان، فلاسک، NumPy، PyTorch، HDF5، بیشبرازش، تجزیه و تحلیل سریهای زمانی، فعالسازی AlexNet، ResNet، Cancer، Tensor Calculus، شبکه های از پیش آموزش دیده، CycleGAN، Torch Hub
در صورت تبدیل فایل کتاب Deep Learning with PyTorch به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری عمیق با PyTorch نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هر روز در مورد روشهای جدیدی برای استفاده بهینه از یادگیری عمیق میشنویم: تصویربرداری پزشکی بهبود یافته، تشخیص دقیق تقلب در کارت اعتباری، پیشبینی طولانی مدت آب و هوا و موارد دیگر. PyTorch این ابرقدرتها را در دستان شما قرار میدهد و یک تجربه راحت پایتون را فراهم میکند که به شما کمک میکند به سرعت شروع کنید و سپس با شما رشد میکند و مهارتهای یادگیری عمیق شما پیچیدهتر میشود. یادگیری عمیق با PyTorch به شما آموزش می دهد که چگونه الگوریتم های یادگیری عمیق را با Python و PyTorch پیاده سازی کنید. این کتاب شما را به یک مطالعه موردی جذاب می برد: ساخت الگوریتمی که قادر به تشخیص تومورهای بدخیم ریه با استفاده از سی تی اسکن باشد. همانطور که نویسندگان شما را از طریق این مثال واقعی راهنمایی می کنند، متوجه خواهید شد که PyTorch چقدر می تواند موثر و سرگرم کننده باشد.
Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and then grows with you as you, and your deep learning skills, become more sophisticated. Deep Learning with PyTorch teaches you how to implement deep learning algorithms with Python and PyTorch. This book takes you into a fascinating case study: building an algorithm capable of detecting malignant lung tumors using CT scans. As the authors guide you through this real example, you'll discover just how effective and fun PyTorch can be.
Deep Learning with PyTorch contents foreword preface acknowledgments about this book Who should read this book How this book is organized: A roadmap About the code Hardware and software requirements liveBook discussion forum Other online resources about the authors about the cover illustration Part 1: Core PyTorch Chapter 1: Introducing deep learning and the PyTorch Library 1.1 The deep learning revolution 1.2 PyTorch for deep learning 1.3 Why PyTorch? 1.3.1 The deep learning competitive landscape 1.4 An overview of how PyTorch supports deep learning projects 1.5 Hardware and software requirements 1.5.1 Using Jupyter Notebooks 1.6 Exercises 1.7 Summary Chapter 2: Pretrained networks 2.1 A pretrained network that recognizes the subject of an image 2.1.1 Obtaining a pretrained network for image recognition 2.1.2 AlexNet 2.1.3 ResNet 2.1.4 Ready, set, almost run 2.1.5 Run! 2.2 A pretrained model that fakes it until it makes it 2.2.1 The GAN game 2.2.2 CycleGAN 2.2.3 A network that turns horses into zebras 2.3 A pretrained network that describes scenes 2.3.1 NeuralTalk2 2.4 Torch Hub 2.5 Conclusion 2.6 Exercises 2.7 Summary Chapter 3: It starts with a tensor 3.1 The world as floating-point numbers 3.2 Tensors: Multidimensional arrays 3.2.1 From Python lists to PyTorch tensors 3.2.2 Constructing our first tensors 3.2.3 The essence of tensors 3.3 Indexing tensors 3.4 Named tensors 3.5 Tensor element types 3.5.1 Specifying the numeric type with dtype 3.5.2 A dtype for every occasion 3.5.3 Managing a tensor’s dtype attribute 3.6 The tensor API 3.7 Tensors: Scenic views of storage 3.7.1 Indexing into storage 3.7.2 Modifying stored values: In-place operations 3.8 Tensor metadata: Size, offset, and stride 3.8.1 Views of another tensor’s storage 3.8.2 Transposing without copying 3.8.3 Transposing in higher dimensions 3.8.4 Contiguous tensors 3.9 Moving tensors to the GPU 3.9.1 Managing a tensor’s device attribute 3.10 NumPy interoperability 3.11 Generalized tensors are tensors, too 3.12 Serializing tensors 3.12.1 Serializing to HDF5 with h5py 3.13 Conclusion 3.14 Exercises 3.15 Summary Chapter 4: Real-world data representation using tensors 4.1 Working with images 4.1.1 Adding color channels 4.1.2 Loading an image file 4.1.3 Changing the layout 4.1.4 Normalizing the data 4.2 3D images: Volumetric data 4.2.1 Loading a specialized format 4.3 Representing tabular data 4.3.1 Using a real-world dataset 4.3.2 Loading a wine data tensor 4.3.3 Representing scores 4.3.4 One-hot encoding 4.3.5 When to categorize 4.3.6 Finding thresholds 4.4 Working with time series 4.4.1 Adding a time dimension 4.4.2 Shaping the data by time period 4.4.3 Ready for training 4.5 Representing text 4.5.1 Converting text to numbers 4.5.2 One-hot-encoding characters 4.5.3 One-hot encoding whole words 4.5.4 Text embeddings 4.5.5 Text embeddings as a blueprint 4.6 Conclusion 4.7 Exercises 4.8 Summary Chapter 5: The mechanics of learning 5.1 A timeless lesson in modeling 5.2 Learning is just parameter estimation 5.2.1 A hot problem 5.2.2 Gathering some data 5.2.3 Visualizing the data 5.2.4 Choosing a linear model as a first try 5.3 Less loss is what we want 5.3.1 From problem back to PyTorch 5.4 Down along the gradient 5.4.1 Decreasing loss 5.4.2 Getting analytical 5.4.3 Iterating to fit the model 5.4.4 Normalizing inputs 5.4.5 Visualizing (again) 5.5 PyTorch’s autograd: Backpropagating all things 5.5.1 Computing the gradient automatically 5.5.2 Optimizers a la carte 5.5.3 Training, validation, and overfitting 5.5.4 Autograd nits and switching it off 5.6 Conclusion 5.7 Exercise 5.8 Summary Chapter 6: Using a neural network to fit the data 6.1 Artificial neurons 6.1.1 Composing a multilayer network 6.1.2 Understanding the error function 6.1.3 All we need is activation 6.1.4 More activation functions 6.1.5 Choosing the best activation function 6.1.6 What learning means for a neural network 6.2 The PyTorch nn module 6.2.1 Using __call__ rather than forward 6.2.2 Returning to the linear model 6.3 Finally a neural network 6.3.1 Replacing the linear model 6.3.2 Inspecting the parameters 6.3.3 Comparing to the linear model 6.4 Conclusion 6.5 Exercises 6.6 Summary Chapter 7: Telling birds from airplanes: Learning from images 7.1 A dataset of tiny images 7.1.1 Downloading CIFAR-10 7.1.2 The Dataset class 7.1.3 Dataset transforms 7.1.4 Normalizing data 7.2 Distinguishing birds from airplanes 7.2.1 Building the dataset 7.2.2 A fully connected model 7.2.3 Output of a classifier 7.2.4 Representing the output as probabilities 7.2.5 A loss for classifying 7.2.6 Training the classifier 7.2.7 The limits of going fully connected 7.3 Conclusion 7.4 Exercises 7.5 Summary Chapter 8: Using convolutions to generalize 8.1 The case for convolutions 8.1.1 What convolutions do 8.2 Convolutions in action 8.2.1 Padding the boundary 8.2.2 Detecting features with convolutions 8.2.3 Looking further with depth and pooling 8.2.4 Putting it all together for our network 8.3 Subclassing nn.Module 8.3.1 Our network as an nn.Module 8.3.2 How PyTorch keeps track of parameters and submodules 8.3.3 The functional API 8.4 Training our convnet 8.4.1 Measuring accuracy 8.4.2 Saving and loading our model 8.4.3 Training on the GPU 8.5 Model design 8.5.1 Adding memory capacity: Width 8.5.2 Helping our model to converge and generalize: Regularization 8.5.3 Going deeper to learn more complex structures: Depth 8.5.4 Comparing the designs from this section 8.5.5 It’s already outdated 8.6 Conclusion 8.7 Exercises 8.8 Summary Part 2: Learning from images in the real world: Early detection of lung cancer Chapter 9: Using PyTorch to fight cancer 9.1 Introduction to the use case 9.2 Preparing for a large-scale project 9.3 What is a CT scan, exactly? 9.4 The project: An end-to-end detector for lung cancer 9.4.1 Why can’t we just throw data at a neural network until it works? 9.4.2 What is a nodule? 9.4.3 Our data source: The LUNA Grand Challenge 9.4.4 Downloading the LUNA data 9.5 Conclusion 9.6 Summary Chapter 10: Combining data sources into a unified dataset 10.1 Raw CT data files 10.2 Parsing LUNA’s annotation data 10.2.1 Training and validation sets 10.2.2 Unifying our annotation and candidate data 10.3 Loading individual CT scans 10.3.1 Hounsfield Units 10.4 Locating a nodule using the patient coordinate system 10.4.1 The patient coordinate system 10.4.2 CT scan shape and voxel sizes 10.4.3 Converting between millimeters and voxel addresses 10.4.4 Extracting a nodule from a CT scan 10.5 A straightforward dataset implementation 10.5.1 Caching candidate arrays with the getCtRawCandidate function 10.5.2 Constructing our dataset in LunaDataset.__init__ 10.5.3 A training/validation split 10.5.4 Rendering the data 10.6 Conclusion 10.7 Exercises 10.8 Summary Chapter 11: Training a classification model to detect suspected tumors 11.1 A foundational model and training loop 11.2 The main entry point for our application 11.3 Pretraining setup and initialization 11.3.1 Initializing the model and optimizer 11.3.2 Care and feeding of data loaders 11.4 Our first-pass neural network design 11.4.1 The core convolutions 11.4.2 The full model 11.5 Training and validating the model 11.5.1 The computeBatchLoss function 11.5.2 The validation loop is similar 11.6 Outputting performance metrics 11.6.1 The logMetrics function 11.7 Running the training script 11.7.1 Needed data for training 11.7.2 Interlude: The enumerateWithEstimate function 11.8 Evaluating the model: Getting 99.7% correct means we’re done, right? 11.9 Graphing training metrics with TensorBoard 11.9.1 Running TensorBoard 11.9.2 Adding TensorBoard support to the metrics logging function 11.10 Why isn’t the model learning to detect nodules? 11.11 Conclusion 11.12 Exercises 11.13 Summary Chapter 12: Improving training with metrics and augmentation 12.1 High-level plan for improvement 12.2 Good dogs vs. bad guys: False positives and false negatives 12.3 Graphing the positives and negatives 12.3.1 Recall is Roxie’s strength 12.3.2 Precision is Preston’s forte 12.3.3 Implementing precision and recall in logMetrics 12.3.4 Our ultimate performance metric: The F1 score 12.3.5 How does our model perform with our new metrics? 12.4 What does an ideal dataset look like? 12.4.1 Making the data look less like the actual and more like the “ideal” 12.4.2 Contrasting training with a balanced LunaDataset to previous runs 12.4.3 Recognizing the symptoms of overfitting 12.5 Revisiting the problem of overfitting 12.5.1 An overfit face-to-age prediction model 12.6 Preventing overfitting with data augmentation 12.6.1 Specific data augmentation techniques 12.6.2 Seeing the improvement from data augmentation 12.7 Conclusion 12.8 Exercises 12.9 Summary Chapter 13: Using segmentation to find suspected nodules 13.1 Adding a second model to our project 13.2 Various types of segmentation 13.3 Semantic segmentation: Per-pixel classification 13.3.1 The U-Net architecture 13.4 Updating the model for segmentation 13.4.1 Adapting an off-the-shelf model to our project 13.5 Updating the dataset for segmentation 13.5.1 U-Net has very specific input size requirements 13.5.2 U-Net trade-offs for 3D vs. 2D data 13.5.3 Building the ground truth data 13.5.4 Implementing Luna2dSegmentationDataset 13.5.5 Designing our training and validation data 13.5.6 Implementing TrainingLuna2dSegmentationDataset 13.5.7 Augmenting on the GPU 13.6 Updating the training script for segmentation 13.6.1 Initializing our segmentation and augmentation models 13.6.2 Using the Adam optimizer 13.6.3 Dice loss 13.6.4 Getting images into TensorBoard 13.6.5 Updating our metrics logging 13.6.6 Saving our model 13.7 Results 13.8 Conclusion 13.9 Exercises 13.10 Summary Chapter 14: End-to-end nodule analysis, and where to go next 14.1 Towards the finish line 14.2 Independence of the validation set 14.3 Bridging CT segmentation and nodule candidate classification 14.3.1 Segmentation 14.3.2 Grouping voxels into nodule candidates 14.3.3 Did we find a nodule? Classification to reduce false positives 14.4 Quantitative validation 14.5 Predicting malignancy 14.5.1 Getting malignancy information 14.5.2 An area under the curve baseline: Classifying by diameter 14.5.3 Reusing preexisting weights: Fine-tuning 14.5.4 More output in TensorBoard 14.6 What we see when we diagnose 14.6.1 Training, validation, and test sets 14.7 What next? Additional sources of inspiration (and data) 14.7.1 Preventing overfitting: Better regularization 14.7.2 Refined training data 14.7.3 Competition results and research papers 14.8 Conclusion 14.8.1 Behind the curtain 14.9 Exercises 14.10 Summary Part 3: Deployment Chapter 15: Deploying to production 15.1 Serving PyTorch models 15.1.1 Our model behind a Flask server 15.1.2 What we want from deployment 15.1.3 Request batching 15.2 Exporting models 15.2.1 Interoperability beyond PyTorch with ONNX 15.2.2 PyTorch’s own export: Tracing 15.2.3 Our server with a traced model 15.3 Interacting with the PyTorch JIT 15.3.1 What to expect from moving beyond classic Python/PyTorch 15.3.2 The dual nature of PyTorch as interface and backend 15.3.3 TorchScript 15.3.4 Scripting the gaps of traceability 15.4 LibTorch: PyTorch in C++ 15.4.1 Running JITed models from C++ 15.4.2 C++ from the start: The C++ API 15.5 Going mobile 15.5.1 Improving efficiency: Model design and quantization 15.6 Emerging technology: Enterprise serving of PyTorch models 15.7 Conclusion 15.8 Exercises 15.9 Summary index