دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: سایبرنتیک: هوش مصنوعی ویرایش: نویسندگان: Hisham El-Amir. Mahmoud Hamdy سری: ISBN (شابک) : 1484253485, 9781484253496 ناشر: 2020 سال نشر: Apress تعداد صفحات: 563 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
کلمات کلیدی مربوط به کتاب خط لوله یادگیری عمیق: ساختن یک مدل یادگیری عمیق با TensorFlow: هوش مصنوعی، یادگیری عمیق، TensorFlow
در صورت تبدیل فایل کتاب Deep Learning Pipeline: Building A Deep Learning Model With TensorFlow به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب خط لوله یادگیری عمیق: ساختن یک مدل یادگیری عمیق با TensorFlow نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
خط لوله خود را بر اساس رویکردهای مدرن TensorFlow به جای مفاهیم مهندسی منسوخ بسازید. این کتاب به شما نشان می دهد که چگونه یک خط لوله یادگیری عمیق برای پروژه های TensorFlow واقعی بسازید. شما یاد خواهید گرفت که خط لوله چیست و چگونه کار می کند تا بتوانید به راحتی و به سرعت یک برنامه کامل بسازید. سپس موانع اصلی Tensorflow را عیبیابی کرده و بر آنها غلبه کنید تا به راحتی برنامههای کاربردی ایجاد کنید و مدلهای آموزش دیده را به کار بگیرید. دستورالعمل های گام به گام و مثال محور به شما کمک می کند تا هر مرحله از خط لوله یادگیری عمیق را درک کنید و در عین حال ساده ترین و مؤثرترین ابزارها را برای مشکلات و مجموعه داده های نمایشی به کار ببرید. شما همچنین با تهیه داده ها، انتخاب مدل متناسب با آن داده ها، و اشکال زدایی مدل خود برای دستیابی به بهترین تناسب با داده ها با استفاده از تکنیک های Tensorflow، یک پروژه یادگیری عمیق ایجاد خواهید کرد. با دسترسی به برخی از قدرتمندترین گرایش های اخیر در علم داده، مهارت های خود را تقویت کنید. اگر تا به حال به ساخت راه حل برچسب گذاری تصویر یا متن یا شرکت در مسابقه Kaggle فکر کرده اید، Deep Learning Pipeline برای شما مناسب است! آنچه خواهید آموخت: • یک پروژه یادگیری عمیق با استفاده از داده ها توسعه دهید • مدل های مختلف را در داده های خود مطالعه و اعمال کنید • اشکال زدایی و عیب یابی مدل مناسب مناسب برای داده های شما این کتاب برای چه کسی است: توسعه دهندگان، تحلیلگران، و دانشمندان داده که به دنبال افزودن یا افزایش مهارت های موجود خود با دسترسی به برخی از قوی ترین گرایش های اخیر در علم داده هستند. تجربه قبلی در پایتون یا سایر زبان های مرتبط با TensorFlow و ریاضیات مفید خواهد بود.
Build your own pipeline based on modern TensorFlow approaches rather than outdated engineering concepts. This book shows you how to build a deep learning pipeline for real-life TensorFlow projects. You'll learn what a pipeline is and how it works so you can build a full application easily and rapidly. Then troubleshoot and overcome basic Tensorflow obstacles to easily create functional apps and deploy well-trained models. Step-by-step and example-oriented instructions help you understand each step of the deep learning pipeline while you apply the most straightforward and effective tools to demonstrative problems and datasets. You'll also develop a deep learning project by preparing data, choosing the model that fits that data, and debugging your model to get the best fit to data all using Tensorflow techniques. Enhance your skills by accessing some of the most powerful recent trends in data science. If you've ever considered building your own image or text-tagging solution or entering a Kaggle contest, Deep Learning Pipeline is for you! What You'll Learn: • Develop a deep learning project using data • Study and apply various models to your data • Debug and troubleshoot the proper model suited for your data Who This Book Is For: Developers, analysts, and data scientists looking to add to or enhance their existing skills by accessing some of the most powerful recent trends in data science. Prior experience in Python or other TensorFlow related languages and mathematics would be helpful.
Table of Contents About the Authors About the Technical Reviewer Introduction Part I: Introduction Chapter 1: A Gentle Introduction Information Theory, Probability Theory, and Decision Theory Information Theory Probability Theory Decision Theory Introduction to Machine Learning Predictive Analytics and Its Connection with Machine learning Machine Learning Approaches Supervised Learning Unsupervised Learning Semisupervised Learning Checkpoint Reinforcement Learning From Machine Learning to Deep Learning Lets’ See What Some Heroes of Machine Learning Say About the Field Connections Between Machine Learning and Deep Learning Difference Between ML and DL In Machine Learning In Deep Learning What Have We Learned Here? Why Should We Learn About Deep Learning (Advantages of Deep learning)? Disadvantages of Deep Learning (Cost of Greatness) Introduction to Deep Learning Machine Learning Mathematical Notations Summary Chapter 2: Setting Up Your Environment Background Python 2 vs. Python 3 Installing Python Python Packages IPython Installing IPython Jupyter Installing Jupyter What Is an ipynb File? Packages Used in the Book NumPy SciPy Pandas Matplotlib NLTK Scikit-learn Gensim TensorFlow Installing on Mac or Linux distributions Installing on Windows Keras Summary Chapter 3: A Tour Through the Deep Learning Pipeline Deep Learning Approaches What Is Deep Learning Biological Deep Learning What Are Neural Networks Architectures? Deep Learning Pipeline Define and Prepare Problem Summarize and Understand Data Process and Prepare Data Evaluate Algorithms Improve Results Fast Preview of the TensorFlow Pipeline Tensors—the Main Data Structure First Session Data Flow Graphs Tensor Properties Tensor Rank Tensor Shape Summary Chapter 4: Build Your First Toy TensorFlow app Basic Development of TensorFlow Hello World with TensorFlow Simple Iterations Prepare the Input Data Doing the Gradients Linear Regression Why Linear Regression? What Is Linear Regression? Dataset Description Full Source Code XOR Implementation Using TensorFlow Full Source Code Summary Part II: Data Chapter 5: Defining Data Defining Data Why Should You Read This Chapter? Structured, Semistructured, and Unstructured Data Tidy Data Divide and Conquer Tabular Data Quantitative vs. Qualitative Data Example—the Titanic Divide and Conquer Making a Checkpoint The Four Levels of Data Measure of Center The Nominal Level Mathematical Operations Allowed for Nominal Measures of Center for Nominal What Does It Mean to be a Nominal Level Type? The Ordinal Level Examples of Being Ordinal What Data Is Like at the Ordinal Level Mathematical Operations Allowed for Ordinal Measures of Center for Ordinal Quick Recap and Check The Interval Level Examples of Interval Level Data What Data Is Like at the Interval Level Mathematical Operations Allowed for Interval Measures of Center for Interval Measures of Variation for Interval Standard Deviation The Ratio Level Examples Measures of Center for Ratio Problems with the Ratio Level Summarizing All Levels Table 5-1 Text Data What Is Text Processing and What Is the Level of Importance of Text Processing? IMDB—Example Images Data Type of Images (2-D, 3-D, 4-D) 2-D Data 3-D Data 4-D Data Example—MNIST Example—CIFAR-10 Summary Chapter 6: Data Wrangling and Preprocessing The Data Fields Pipelines Revisited Giving You a Reason Where Is Data Cleaning in the Process? Data Loading and Preprocessing Fast and Easy Data Loading Missing Data Empties Is It Ever Useful to Fill Missing Data Using a Zero Instead of an Empty or Null? Managing Missing Features Dealing with Big Datasets Accessing Other Data Formats Data Preprocessing Data Augmentation Image Crop Crop and Resize Crop to Bounding Box Flipping Rotate Image Translation Transform Adding Salt and Pepper Noise Convert RGB to Grayscale Change Brightness Adjust Contrast Adjust Hue Adjust Saturation Categorical and Text data Data Encoding Performing One-Hot Encoding on Nominal Features Can You Spot the Problem? A Special Type of Data: Text So Far, Everything Has Been Pretty Good, Hasn’t It? Tokenization, Stemming, and Stop Words What Are Tokenizing and Tokenization? The Bag-of-Words (BoW) Model What is the BoW? Summary Chapter 7: Data Resampling Creating Training and Test Sets Cross-Validation Validation Set Technique Leave-One-Out Cross-Validation (LOOCV) K-Fold Cross-Validation Bootstrap Bootstrap in Statistics Tips to Use Bootstrap (Resampling with Replacement) Generators What Are Keras Generators? Data Generator Callback Summary Chapter 8: Feature Selection and Feature Engineering Dataset Used in This Chapter Dimensionality Reduction—Questions to Answer What Is Dimensionality Reduction? When Should I Use Dimensionality Reduction? Unsupervised Dimensionality Reduction via Principal Component Analysis (PCA) Total and Explained Variance Feature Selection and Filtering Principal Component Analysis Nonnegative Matrix Factorization Sparse PCA Kernel PCA Atom Extraction and Dictionary Learning Latent Dirichlet Allocation (LDA) Latent Dirichlet Allocation (LDA in NLP) Code Example Using gensim LDA vs. PCA ZCA Whitening Summary Part III: TensorFlow Chapter 9: Deep Learning Fundamentals Perceptron Single Perceptron Multilayer Perceptron Recap Different Neural Network Layers Input Layer Hidden Layer(s) Output Layer Shallow vs. Deep Neural Networks Activation Functions Types of Activation Functions Recap Gradient Descent Recap Batch vs. Stochastic vs. Mini-Batch Gradient Descent Batch Gradient Descent Stochastic Gradient Descent Mini-batch Gradient Descent Recap Loss function and Backpropagation Loss Function Backpropagation The Four Fundamental Equations Behind Backpropagation Exploding Gradients Re-Design the Network Model Use Long Short-Term Memory Networks Use Gradient Clipping Use Weight Regularization Vanishing Gradients Vanishing Gradients Problem TensorFlow Basics Placeholder vs. Variable vs. Constant Gradient-Descent Optimization Methods from a Deep-Learning Perspective Learning Rate in the Mini-batch Approach to Stochastic Gradient Descent Summary Chapter 10: Improving Deep Neural Networks Optimizers in TensorFlow The Notation to Use Momentum Nesterov Accelerated Gradient Adagrad Adadelta RMSprop Adam Nadam (Adam + NAG) Choosing the Learning Rate Dropout Layers and Regularization Normalization Techniques Batch Normalization Weight Normalization Layer Normalization Instance Normalization Group Normalization Summary Chapter 11: Convolutional Neural Network What is a Convolutional Neural Network Convolution Operation One-Dimensional Convolution Two-Dimensional Convolution Padding and Stride Common Image-Processing Filters Mean and Median Filters Gaussian Filter Sobel Edge-Detection Filter Identity Transform Convolutional Neural Networks Layers of Convolutional Neural Networks Input Layer Convolutional layer Pooling Layer Backpropagation Through the Convolutional and Pooling Layers Weight Sharing Through Convolution and Its Advantages Translation Equivariance and Invariance Case Study—Digit Recognition on the CIFAR-10 Dataset Summary Chapter 12: Sequential Models Recurrent Neural Networks Language Modeling Backpropagation Through Time Vanishing and Exploding Gradient Problems in RNN The Solution to Vanishing and Exploding Gradients Problems in RNNs Long Short-Term Memory Case Study—Digit Identification on the MNIST Dataset Gated Recurrent Unit Bidirectional RNN (Bi-RNN) Summary Part IV: Applying What You’ve Learned Chapter 13: Selected Topics in Computer Vision Different Architectures in Convolutional Neural Networks LeNet AlexNet VGG ResNet Transfer Learning What Is a Pretrained Model, and Why Use It? How to Use a Pretrained Model? Ways to Fine-Tune the Model Pretrained VGG19 Summary Chapter 14: Selected Topics in Natural Language Processing Vector Space Model Vector Representation of Words Word2Vec Continuous Bag of Words Implementing Continuous Bag of Words Skip-Gram Model for Word Embeddings Implementing Skip-Gram GloVe Summary Chapter 15: Applications Case Study—Tabular Dataset Understanding the Dataset Scratching the Surface Digging Deeper Preprocessing Dataset Building the Model Case Study—IMDB Movie Review Data with Word2Vec Case Study—Image Segmentation Summary Index