ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Deep learning in medical image analysis and multimodal learning for clinical decision support : third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, held in conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings

دانلود کتاب یادگیری عمیق در تجزیه و تحلیل تصویر پزشکی و یادگیری چندوجهی برای پشتیبانی تصمیم گیری بالینی: سومین کارگاه بین المللی، DLMIA 2017، و هفتمین کارگاه بین المللی، ML-CDS 2017، که در ارتباط با MICCAI 2017، شهر کبک، QC، کانادا، 14 سپتامبر، مجموعه مقالات برگزار شد.

Deep learning in medical image analysis and multimodal learning for clinical decision support : third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, held in conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings

مشخصات کتاب

Deep learning in medical image analysis and multimodal learning for clinical decision support : third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, held in conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings

ویرایش:  
نویسندگان: ,   
سری: Lecture notes in computer science 10553.; LNCS sublibrary. SL 6, Image processing computer vision pattern recognition and graphics 
ISBN (شابک) : 9783319675589, 9783319675572 
ناشر: Springer 
سال نشر: 2017 
تعداد صفحات: 398 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 85 مگابایت 

قیمت کتاب (تومان) : 49,000



کلمات کلیدی مربوط به کتاب یادگیری عمیق در تجزیه و تحلیل تصویر پزشکی و یادگیری چندوجهی برای پشتیبانی تصمیم گیری بالینی: سومین کارگاه بین المللی، DLMIA 2017، و هفتمین کارگاه بین المللی، ML-CDS 2017، که در ارتباط با MICCAI 2017، شهر کبک، QC، کانادا، 14 سپتامبر، مجموعه مقالات برگزار شد.: انفورماتیک پزشکی -- کنگره ها، هوش مصنوعی -- برنامه های کاربردی پزشکی -- کنگره ها، هوش مصنوعی -- برنامه های کاربردی پزشکی، انفورماتیک پزشکی



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Deep learning in medical image analysis and multimodal learning for clinical decision support : third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, held in conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب یادگیری عمیق در تجزیه و تحلیل تصویر پزشکی و یادگیری چندوجهی برای پشتیبانی تصمیم گیری بالینی: سومین کارگاه بین المللی، DLMIA 2017، و هفتمین کارگاه بین المللی، ML-CDS 2017، که در ارتباط با MICCAI 2017، شهر کبک، QC، کانادا، 14 سپتامبر، مجموعه مقالات برگزار شد. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب یادگیری عمیق در تجزیه و تحلیل تصویر پزشکی و یادگیری چندوجهی برای پشتیبانی تصمیم گیری بالینی: سومین کارگاه بین المللی، DLMIA 2017، و هفتمین کارگاه بین المللی، ML-CDS 2017، که در ارتباط با MICCAI 2017، شهر کبک، QC، کانادا، 14 سپتامبر، مجموعه مقالات برگزار شد.



این کتاب مجموعه مقالات مشترک داوری سومین کارگاه بین‌المللی یادگیری عمیق در تجزیه و تحلیل تصویر پزشکی، DLMIA 2017، و ششمین کارگاه بین‌المللی آموزش چندوجهی برای حمایت از تصمیم‌گیری بالینی، ML-CDS 2017 است که به همراهی برگزار شد. با بیستمین کنفرانس بین المللی تصویربرداری پزشکی و مداخله به کمک کامپیوتر، MICCAI 2017، در شهر کبک، QC، کانادا، در سپتامبر 2017.

38 مقاله کامل ارائه شده در DLMIA 2017 و 5 مقاله کامل ارائه شده در ML-CDS 2017 به دقت بررسی و انتخاب شدند. مقالات DLMIA بر طراحی و استفاده از روش های یادگیری عمیق در تصویربرداری پزشکی تمرکز دارند. مقالات ML-CDS در مورد تکنیک های جدید کاوی/بازیابی چندوجهی و استفاده از آنها در پشتیبانی تصمیم گیری بالینی بحث می کنند.


توضیحاتی درمورد کتاب به خارجی

This book constitutes the refereed joint proceedings of the Third International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2017, and the 6th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2017, held in conjunction with the 20th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2017, in Québec City, QC, Canada, in September 2017.

The 38 full papers presented at DLMIA 2017 and the 5 full papers presented at ML-CDS 2017 were carefully reviewed and selected. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support.



فهرست مطالب

Front Matter ....Pages I-XIX
Front Matter ....Pages 1-1
Simultaneous Multiple Surface Segmentation Using Deep Learning (Abhay Shah, Michael D. Abramoff, Xiaodong Wu)....Pages 3-11
A Deep Residual Inception Network for HEp-2 Cell Classification (Yuexiang Li, Linlin Shen)....Pages 12-20
Joint Segmentation of Multiple Thoracic Organs in CT Images with Two Collaborative Deep Architectures (Roger Trullo, Caroline Petitjean, Dong Nie, Dinggang Shen, Su Ruan)....Pages 21-29
Accelerated Magnetic Resonance Imaging by Adversarial Neural Network (Ohad Shitrit, Tammy Riklin Raviv)....Pages 30-38
Left Atrium Segmentation in CT Volumes with Fully Convolutional Networks (Honghui Liu, Jianjiang Feng, Zishun Feng, Jiwen Lu, Jie Zhou)....Pages 39-46
3D Randomized Connection Network with Graph-Based Inference (Siqi Bao, Pei Wang, Albert C. S. Chung)....Pages 47-55
Adversarial Training and Dilated Convolutions for Brain MRI Segmentation (Pim Moeskops, Mitko Veta, Maxime W. Lafarge, Koen A. J. Eppenhof, Josien P. W. Pluim)....Pages 56-64
CNNs Enable Accurate and Fast Segmentation of Drusen in Optical Coherence Tomography (Shekoufeh Gorgi Zadeh, Maximilian W. M. Wintergerst, Vitalis Wiens, Sarah Thiele, Frank G. Holz, Robert P. Finger et al.)....Pages 65-73
Region-Aware Deep Localization Framework for Cervical Vertebrae in X-Ray Images (S. M. Masudur Rahman Al Arif, Karen Knapp, Greg Slabaugh)....Pages 74-82
Domain-Adversarial Neural Networks to Address the Appearance Variability of Histopathology Images (Maxime W. Lafarge, Josien P. W. Pluim, Koen A. J. Eppenhof, Pim Moeskops, Mitko Veta)....Pages 83-91
Accurate Lung Segmentation via Network-Wise Training of Convolutional Networks (Sangheum Hwang, Sunggyun Park)....Pages 92-99
Deep Residual Recurrent Neural Networks for Characterisation of Cardiac Cycle Phase from Echocardiograms (Fatemeh Taheri Dezaki, Neeraj Dhungel, Amir H. Abdi, Christina Luong, Teresa Tsang, John Jue et al.)....Pages 100-108
Computationally Efficient Cardiac Views Projection Using 3D Convolutional Neural Networks (Matthieu Le, Jesse Lieman-Sifry, Felix Lau, Sean Sall, Albert Hsiao, Daniel Golden)....Pages 109-116
Non-rigid Craniofacial 2D-3D Registration Using CNN-Based Regression (Yuru Pei, Yungeng Zhang, Haifang Qin, Gengyu Ma, Yuke Guo, Tianmin Xu et al.)....Pages 117-125
A Deep Level Set Method for Image Segmentation (Min Tang, Sepehr Valipour, Zichen Zhang, Dana Cobzas, Martin Jagersand)....Pages 126-134
Context-Based Normalization of Histological Stains Using Deep Convolutional Features (D. Bug, S. Schneider, A. Grote, E. Oswald, F. Feuerhake, J. Schüler et al.)....Pages 135-142
Transitioning Between Convolutional and Fully Connected Layers in Neural Networks (Shazia Akbar, Mohammad Peikari, Sherine Salama, Sharon Nofech-Mozes, Anne Martel)....Pages 143-150
Quantifying the Impact of Type 2 Diabetes on Brain Perfusion Using Deep Neural Networks (Behrouz Saghafi, Prabhat Garg, Benjamin C. Wagner, S. Carrie Smith, Jianzhao Xu, Ananth J. Madhuranthakam et al.)....Pages 151-159
Multi-stage Diagnosis of Alzheimer’s Disease with Incomplete Multimodal Data via Multi-task Deep Learning (Kim-Han Thung, Pew-Thian Yap, Dinggang Shen)....Pages 160-168
A Multi-scale CNN and Curriculum Learning Strategy for Mammogram Classification (William Lotter, Greg Sorensen, David Cox)....Pages 169-177
Analyzing Microscopic Images of Peripheral Blood Smear Using Deep Learning (Dheeraj Mundhra, Bharath Cheluvaraju, Jaiprasad Rampure, Tathagato Rai Dastidar)....Pages 178-185
AGNet: Attention-Guided Network for Surgical Tool Presence Detection (Xiaowei Hu, Lequan Yu, Hao Chen, Jing Qin, Pheng-Ann Heng)....Pages 186-194
Pathological Pulmonary Lobe Segmentation from CT Images Using Progressive Holistically Nested Neural Networks and Random Walker (Kevin George, Adam P. Harrison, Dakai Jin, Ziyue Xu, Daniel J. Mollura)....Pages 195-203
End-to-End Unsupervised Deformable Image Registration with a Convolutional Neural Network (Bob D. de Vos, Floris F. Berendsen, Max A. Viergever, Marius Staring, Ivana Išgum)....Pages 204-212
Stain Colour Normalisation to Improve Mitosis Detection on Breast Histology Images (Azam Hamidinekoo, Reyer Zwiggelaar)....Pages 213-221
3D FCN Feature Driven Regression Forest-Based Pancreas Localization and Segmentation (Masahiro Oda, Natsuki Shimizu, Holger R. Roth, Ken’ichi Karasawa, Takayuki Kitasaka, Kazunari Misawa et al.)....Pages 222-230
A Unified Framework for Tumor Proliferation Score Prediction in Breast Histopathology (Kyunghyun Paeng, Sangheum Hwang, Sunggyun Park, Minsoo Kim)....Pages 231-239
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations (Carole H. Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, M. Jorge Cardoso)....Pages 240-248
ssEMnet: Serial-Section Electron Microscopy Image Registration Using a Spatial Transformer Network with Learned Features (Inwan Yoo, David G. C. Hildebrand, Willie F. Tobin, Wei-Chung Allen Lee, Won-Ki Jeong)....Pages 249-257
Fully Convolutional Regression Network for Accurate Detection of Measurement Points (Michal Sofka, Fausto Milletari, Jimmy Jia, Alex Rothberg)....Pages 258-266
Fast Predictive Simple Geodesic Regression (Zhipeng Ding, Greg Fleishman, Xiao Yang, Paul Thompson, Roland Kwitt, Marc Niethammer et al.)....Pages 267-275
Learning Spatio-Temporal Aggregation for Fetal Heart Analysis in Ultrasound Video (Arijit Patra, Weilin Huang, J. Alison Noble)....Pages 276-284
Fast, Simple Calcium Imaging Segmentation with Fully Convolutional Networks (Aleksander Klibisz, Derek Rose, Matthew Eicholtz, Jay Blundon, Stanislav Zakharenko)....Pages 285-293
Self-supervised Learning for Spinal MRIs (Amir Jamaludin, Timor Kadir, Andrew Zisserman)....Pages 294-302
Skin Lesion Segmentation via Deep RefineNet (Xinzi He, Zhen Yu, Tianfu Wang, Baiying Lei)....Pages 303-311
Multi-scale Networks for Segmentation of Brain Magnetic Resonance Images (Jie Wei, Yong Xia)....Pages 312-320
Deep Learning for Automatic Detection of Abnormal Findings in Breast Mammography (Ayelet Akselrod-Ballin, Leonid. Karlinsky, Alon Hazan, Ran Bakalo, Ami Ben Horesh, Yoel Shoshan et al.)....Pages 321-329
Grey Matter Segmentation in Spinal Cord MRIs via 3D Convolutional Encoder Networks with Shortcut Connections (Adam Porisky, Tom Brosch, Emil Ljungberg, Lisa Y. W. Tang, Youngjin Yoo, Benjamin De Leener et al.)....Pages 330-337
Front Matter ....Pages 339-339
Mapping Multi-Modal Routine Imaging Data to a Single Reference via Multiple Templates (Johannes Hofmanninger, Bjoern Menze, Marc-André Weber, Georg Langs)....Pages 341-348
Automated Detection of Epileptogenic Cortical Malformations Using Multimodal MRI (Ravnoor S. Gill, Seok-Jun Hong, Fatemeh Fadaie, Benoit Caldairou, Boris Bernhardt, Neda Bernasconi et al.)....Pages 349-356
Prediction of Amyloidosis from Neuropsychological and MRI Data for Cost Effective Inclusion of Pre-symptomatic Subjects in Clinical Trials (Manon Ansart, Stéphane Epelbaum, Geoffroy Gagliardi, Olivier Colliot, Didier Dormont, Bruno Dubois et al.)....Pages 357-364
Automated Multimodal Breast CAD Based on Registration of MRI and Two View Mammography (T. Hopp, P. Cotic Smole, N. V. Ruiter)....Pages 365-372
EMR-Radiological Phenotypes in Diseases of the Optic Nerve and Their Association with Visual Function (Shikha Chaganti, Jamie R. Robinson, Camilo Bermudez, Thomas Lasko, Louise A. Mawn, Bennett A. Landman)....Pages 373-381
Erratum to: Fast Predictive Simple Geodesic Regression (Zhipeng Ding, Greg Fleishman, Xiao Yang, Paul Thompson, Roland Kwitt, Marc Niethammer et al.)....Pages E1-E1
Back Matter ....Pages 383-385




نظرات کاربران