دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: زمين شناسي ویرایش: نویسندگان: B.N. Orcutt, I. Daniel, R. Dasgupta سری: ISBN (شابک) : 9781108677950, 2019019485 ناشر: Cambridge University Press سال نشر: 2020 تعداد صفحات: 688 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 29 مگابایت
در صورت تبدیل فایل کتاب Deep Carbon: Past to Present به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کربن عمیق: گذشته تا حال نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کربن یکی از مهمترین عناصر سیاره ما است و 90 درصد آن در داخل زمین قرار دارد. این کتاب 10 سال تحقیق دانشمندان درگیر در رصدخانه کربن عمیق، جامعه جهانی متشکل از بیش از 1200 دانشمند را خلاصه می کند. این یک راهنمای جامع برای کربن در داخل زمین، شامل مقادیر، حرکات، اشکال، منشاء، تغییرات در طول زمان، و تاثیرات آن بر فرآیندهای سیارهای است. کارشناسان برجسته از رشتههای مختلف، از جمله علوم زمین، زیستشناسی، شیمی و فیزیک، بینشهای هیجانانگیز جدیدی را در مورد ماهیت به هم پیوسته چرخه جهانی کربن ارائه میکنند و توضیح میدهند که چرا برای گذشته، حال و آینده سیاره ما اهمیت دارد. با مشکلات انتهای فصل، اینفوگرافیک های گویا، تصاویر تمام رنگی و دسترسی به مدل ها و مجموعه داده های آنلاین، مرجع ارزشمندی برای دانشجویان فارغ التحصیل، محققان و دانشمندان حرفه ای علاقه مند به چرخه کربن و علم سیستم زمین است. این عنوان همچنین به صورت Open Access در Cambridge Core در آدرس doi.org/10.1017/9781108677950 موجود است. بث ان. اورکات، پژوهشگر ارشد در آزمایشگاه علوم اقیانوسی بیگلو، ایالات متحده آمریکا است. تحقیقات او بر درک حیات میکروسکوپی در و زیر بستر دریا متمرکز است. او که بیش از 600 روز را در دریا در مأموریت های میدانی، از جمله غواصی تا کف دریا در زیردریایی الوین، کار کرده، در اکتشاف اقیانوس متخصص است. اورکات دارای کمک هزینه تحصیلی Kavli Frontiers in Science و جایزه پس از تصدی بخش ژئوبیولوژی و ژئومیکروبیولوژی 2018 از انجمن زمین شناسی آمریکا است. ایزابل دانیل استاد علوم زمین در دانشگاه کلود برنارد لیون 1 فرانسه است. او همچنین به آزمایشگاه زمینشناسی لیون وابسته است و ریاست رصدخانه لیون را بر عهده دارد. تحقیقات او بر روی ژئوبیولوژی و مواد معدنی، سنگ ها و سیالات تحت شرایط شدید متمرکز است. او سرپانتینه شدن و کانیهای سرپانتین، برهمکنشهای سیال- سنگ در فشار بالا و میکروارگانیسمها را در شرایط شدید بررسی میکند. او یکی از اعضای انجمن کانی شناسی آمریکا است. راجدیپ داسگوپتا استاد زمین، محیط زیست و علوم سیاره ای در دانشگاه رایس، ایالات متحده آمریکا است. تحقیقات او بر فرآیندهای عمیق زمین و فضای داخلی سیارات متمرکز است که او با استفاده از رویکردهای ژئوشیمیایی و پترولوژیکی دنبال می کند. او دریافت کننده مدال جیمز بی مکلوان و جایزه هیساشی کونو از اتحادیه ژئوفیزیک آمریکا، مدال F. W. کلارک از انجمن ژئوشیمی، جایزه شغلی اولیه دانشکده از بنیاد ملی علوم ایالات متحده و بورسیه علمی Packard است. و مهندسی. او همچنین عضو اتحادیه ژئوفیزیک آمریکا است.
Carbon is one of the most important elements of our planet, and 90% of it resides inside Earth’s interior. This book summarizes 10 years of research by scientists involved in the Deep Carbon Observatory, a global community of more than 1200 scientists. It is a comprehensive guide to carbon inside Earth, including its quantities, movements, forms, origins, changes over time, and impacts on planetary processes. Leading experts from a variety of fields, including geoscience, biology, chemistry, and physics, provide exciting new insights into the interconnected nature of the global carbon cycle and explain why it matters to the past, present, and future of our planet. With end-of-chapter problems, illustrative infographics, full-color images, and access to online models and data sets, it is a valuable reference for graduate students, researchers, and professional scientists interested in carbon cycling and Earth system science. This title is also available as Open Access on Cambridge Core at doi.org/10.1017/9781108677950. Beth N. Orcutt is Senior Research Scientist at Bigelow Laboratory for Ocean Sciences, USA. Her research focuses on understanding microscopic life at and below the seafloor. Having clocked over 600 days at sea on field missions, including dives to the seafloor in the Alvin submersible, she is an expert in ocean exploration. Orcutt has received a Kavli Frontiers in Science Fellowship and the 2018 Geobiology and Geomicrobiology Division Post-Tenure Award from the Geological Society of America. Isabelle Daniel is Professor of Earth Sciences at the Université Claude Bernard Lyon 1, France. She is also affiliated with the Laboratoire de Géologie de Lyon and chairs the Observatoire de Lyon. Her research focuses on geobiology and minerals, rocks, and fluids under extreme conditions. She investigates serpentinization and serpentine minerals, fluid– rock interactions at high pressure, and microorganisms under extreme conditions. She is a fellow of the Mineralogical Society of America. Rajdeep Dasgupta is Professor of Earth, Environmental and Planetary Sciences at Rice University, USA. His research focuses on the deep processes of Earth and planetary interiors, which he pursues using geochemical and petrological approaches. He is a recipient of the James B. Macelwane Medal and Hisashi Kuno Award from the American Geophysical Union, the F. W. Clarke Medal from the Geochemical Society, the Faculty Early Career Award from the US National Science Foundation, and the Packard Fellow- ship for Science and Engineering. He is also a fellow of the American Geophysical Union.
Cover Half-title Title page Copyright information Contents List of Contributors 1 Introduction to Deep Carbon: Past to Present Reference 2 Origin and Early Differentiation of Carbon and Associated Life-Essential Volatile Elements on Earth 2.1 Introduction 2.2 Constraints on the Compositions of Terrestrial Building Blocks 2.2.1 Constraints from Isotopes of Refractory Elements 2.2.2 Constraints from Isotopes of Highly Volatile Elements 2.2.3 Constraints from Theoretical Modeling 2.3 C and Other Volatiles: Abundances, Ratios, and Forms in Various Classes of Meteorites and Comparison with the BSE 2.4 Establishing LEVE Budgets of the BSE After Core Formation? 2.4.1 The Role of Late Accretion 2.4.2 The Role of Post-core Formation Sulfide Segregation 2.4.3 The Role of MO–Atmosphere Interactions and Atmospheric Loss 2.5 Establishing the Volatile Budget of the BSE through Equilibrium Accretion and MO Differentiation 2.5.1 Carbon Speciation in MO 2.5.2 Dalloy/silicateC and Its Impact on Carbon Distribution between BSE versus Core in Various Scenarios of Equilibrium Core Formation 2.5.3 Comparison of Dalloy/silicateC with Alloy–Silicate Melt Partitioning of Other LEVEs 2.6 C and Other LEVE Budgets of the BSE: A Memory of Multistage Accretion and Core Formation Process with Partial Equilibrium? 2.6.1 Disequilibrium Core Formation 2.7 Carbon as a Light Element in the Core 2.8 Conclusion 2.9 Limits of Knowledge and Unknowns Acknowledgments Questions for the Classroom References 3 Carbon versus Other Light Elements in Earth's Core 3.1 Introduction 3.2 Constraints on Carbon versus Other Light Elements in Earth's Core 3.2.1 Constraints from Phase Relations of Iron–Light Element Systems 3.2.2 Constraints from Densities of Fe–C Alloys and Compounds 3.2.2.1 Fe3C 3.2.2.2 Fe7C3 3.2.2.3 Fe–C Alloy Near the Iron End Member 3.2.2.4 Liquid Fe–C Alloy 3.2.2.5 Other Light Elements 3.2.3 Constraints from Sound Velocities of Fe–C Alloys and Compounds 3.2.3.1 Fe3C 3.2.3.2 Fe7C3 3.2.3.3 Fe–C Alloy Near the Iron End Member 3.2.3.4 Liquid Fe–C Alloy 3.2.3.5 Other Light Elements 3.2.4 Constraints from Melting Temperatures of Fe–C Alloys 3.3 Implications of Carbon as a Major Light Element in the Core 3.4 Carbon in the Core Over Time 3.5 Conclusion 3.6 Limits to Knowledge and Unknowns Acknowledgments Questions for the Classroom References 4 Carbon-Bearing Phases throughout Earth's Interior: Evolution through Space and Time 4.1 Introduction 4.2 The Abundance, Speciation, and Extraction of Carbon from the Upper Mantle over Time 4.3 The Stability of Reduced and Oxidized Forms of Carbon in the Upper Mantle: Continental Lithosphere versus Convective Mantle 4.4 The Redox State and Speciation of C in the Transition Zone and Lower Mantle 4.4.1 Carbides and C in (Fe,Ni) Alloys 4.4.2 Carbonate Minerals in Earth's Interior 4.4.2.1 Dolomite and Its High-Pressure Polymorphs 4.4.2.2 Deep Carbon Stored as CaCO3-like Phases 4.4.2.3 Magnesite and Fe-Bearing Solid Solutions as Deep Carbon Reservoirs 4.4.3 Toward Oxy-Thermobarometry of the Deep Mantle and Implications for Carbon Speciation 4.5 Seismic Detectability of Reduced and Oxidized Carbon in Earth's Mantle 4.6 Conclusion 4.7 Limits to Knowledge and Unknowns Acknowledgments Questions for the Classroom References 5 Diamonds and the Mantle Geodynamics of Carbon: Deep Mantle Carbon Evolution from the Diamond Record 5.1 Introduction 5.2 Physical Conditions of Diamond Formation 5.2.1 Measuring the Depth of Diamond Formation 5.2.2 Thermal Modeling of Diamond in the Mantle from Fourier-Transform Infrared Spectroscopy Maps 5.3 Diamond-Forming Reactions, Mechanisms, and Fluids 5.3.1 Direct Observation of Reduced Mantle Volatiles in Lithospheric and Sublithospheric Diamonds 5.3.2 Redox-Neutral Diamond Formation and Its Unexpected Effect on Carbon Isotope Fractionation 5.3.3 Progress in Understanding Diamond-Forming Metasomatic Fluids 5.4 Sources of Carbon and Recycling of Volatiles 5.4.1 Atmospheric and Biotic Recycling of Sulfur into the Mantle 5.4.2 Carbon and Nitrogen Cycling into the Mantle Transition Zone 5.4.3 Earth's Deep Water and the Carbon Cycle 5.5 Mineral Inclusions and Diamond Types 5.5.1 Experiments to Study Diamond Formation and Inclusion Entrapment 5.5.2 Nanoscale Evidence for Polycrystalline Diamond Formation 5.5.3 Proterozoic Lherzolitic Diamond Formation: A Deep and Early Precursor to Kimberlite Magmatism 5.5.4 Diamond Growth by Redox Freezing from Carbonated Melts in the Deep Mantle 5.5.5 Evidence for Carbon-Reducing Regions of the Convecting Mantle 5.6 Limits to Knowledge and Questions for the Future Acknowledgments References 6 CO2-Rich Melts in Earth 6.1 Introduction 6.2 Constraints on Carbonate Stability in Earth's Mantle 6.3 Experimental Constraints on the Melting of Carbonate Peridotite in the Mantle 6.4 Carbonate Melts Associated with Subduction Zones 6.5 Melting of Subducted, Carbonated Sediment and Ocean Crust in the Deep Upper Mantle and Transition Zone 6.6 Carbonate Melts and Kimberlites in the Cratonic Lithospheric Mantle 6.6.1 Kimberlites 6.6.2 Redox Constraints on Carbonate Stability in the Cratonic Lithospheric Mantle 6.6.3 The Involvement of Carbonate Melts in Metasomatism of the Deep Cratonic Lithospheric Mantle 6.7 Carbonate Melts beneath Ocean Islands in Intraplate Settings 6.7.1 How Do CO2-Rich Silicate Melts Form in the Upper Mantle? Can These CO2-Rich Melts Explain the Chemistry of Erupted Magmas in Intraplate Ocean Islands? 6.7.2 Effect of CO2 on the Reaction between Eclogite-Derived Partial Melts and Peridotite 6.8 Carbonate Melts under Mid-ocean Ridges 6.9 Crustally Emplaced Carbonatites 6.10 Concluding Remarks 6.11 Limits to Knowledge and Unknowns Acknowledgments Questions for the Classroom References 7 The Link between the Physical and Chemical Properties of Carbon-Bearing Melts and Their Application for Geophysical Imaging of Earth's Mantle 7.1 Introduction: Toward a Geophysical Definition of Incipient Melting and Mantle Metasomatism 7.2 CO2-Rich Melts in the Mantle: Stability, Composition, and Structure 7.2.1 Partial Melting in the Presence of CO2 and H2O: Incipient Melting 7.2.2 Carbonate to Silicate Melts in Various Geodynamic Settings 7.2.3 Structural Differences between Silicate and Carbonate Melts 7.3 Physical Properties of CO2-Rich Melts in the Mantle 7.3.1 Evolution of the Melt Density with Composition, CO2, and H2O Contents 7.3.2 Transport Properties: Viscosity–Diffusion 7.3.3 Electrical Conductivity 7.4 Interconnection of CO2-Rich Melts in the Mantle 7.5 Mobility and Geophysical Imaging of Incipient Melts in the Upper Mantle 7.5.1 Melt Mobility as a Function of Melt Composition 7.5.2 EC versus Mobility of Incipient Melts 7.6 Conclusions 7.6.1 LAB versus Geophysical Discontinuities 7.6.2 Manifold Types of Mantle Convection Fuel Incipient Melting 7.7 Limits to Knowledge and Unknowns Acknowledgments Questions for the Classroom References 8 Carbon Dioxide Emissions from Subaerial Volcanic Regions: Two Decades in Review 8.1 Introduction 8.2 Methods for Measuring Volcanic CO2: Established Techniques and Recent Advances 8.2.1 Measurements of CO2 Emissions in Volcanic Plumes 8.2.2 Diffuse CO2 Emissions and Groundwater Contributions 8.2.3 Significant Recent Advances: Continuous and Remote Techniques 8.3 Estimating Global Emission Rates of CO2 8.4 Current State of Knowledge of CO2 Degassing from Volcanoes 8.4.1 CO2 Emissions from Earth's Most Active Volcanoes 8.4.2 CO2 Emissions during Explosive Eruptions 8.4.3 CO2 Emissions from Dormant Volcanoes 8.4.3.1 Small Volcanic Plumes: Fumarolic Contributions 8.4.3.2 Diffuse Emission of CO2: Hydrothermal Systems, Calderas, and Continental Rifts 8.5 The Next Iteration of Global Volcanic CO2 Emissions 8.6 Temporal Variability of Volcanic Degassing 8.6.1 Comparison of the Temporal Variability of CO2 Emission from Active and Less Active Volcanoes 8.6.2 Using the Temporal Variability of CO2/SO2 in Volcanic Gas for Eruption Forecasting 8.7 Sources of Carbon Outgassed from Volcanoes 8.8 Volcanic Release of CO2 over Geologic Time 8.9 Synthesis 8.10 Limits to Knowledge of Volcanic Carbon Acknowledgments Questions for the Classroom List of Online Resources References 9 Carbon in the Convecting Mantle 9.1 Introduction 9.2 Sampling 9.3 Fluxes of CO2 from the Global Mid-Ocean Ridge System 9.3.1 MORB Melt Inclusions and the Usefulness of Volatile/Nonvolatile Element Ratios 9.3.2 Variations in Primary MORB CO2 Contents and CO2 Fluxes 9.4 Fluxes of CO2 from Mantle Plumes 9.5 Carbon Content of Convecting Mantle Sources 9.6 Carbon and Mantle Melting 9.7 Conclusions 9.8 Limits of Knowledge and Unknowns Acknowledgments Questions for the Classroom References 10 How Do Subduction Zones Regulate the Carbon Cycle? 10.1 Carbon Distribution on Earth 10.2 How Do Surface Processes Control the Subduction Carbon Cycle? 10.2.1 Sources to Sinks and Back 10.2.2 Heterogeneity of Sedimentary Carbonate Subduction (Carbonate Pump) 10.2.3 Hot Spot of Organic Carbon Subduction in the Sub-Arctic Pacific Rim (Soft Tissue Pump) 10.2.4 An Ancient Hydrothermal Carbon Sink 10.3 Is the Subduction Zone Carbon Neutral? 10.4 How Rocks Influence the Solubility of Carbon 10.4.1 Dissolution by Rising Pressure and Temperature: Which Silicate Is in Charge? 10.4.2 Carbonate Melts from Hot Slabs and Diapirs? 10.4.3 Where Is the Barrier to Deep Carbon Subduction? 10.4.4 Are Thermal Anomalies the Norm? 10.5 Transport and Reactivity of Carbon-Bearing Liquids 10.5.1 Pressure and Temperature 10.5.2 Low- and High-Temperature Redox Processes 10.5.3 SiO2 Activity 10.5.4 Water 10.6 Carbon Dynamics at the Subduction/Collision Transition 10.7 A Flavor of Life: A 3 Billion-Year-Old Record 10.7.1 Biological Evolution Influences Carbon Subduction: First Milestone 10.7.2 Biological Evolution Influences the Dioxygen Cycle: Second Milestone 10.7.3 Biological Evolution Influences the Cycle of Alkalinity: Third Milestone 10.7.4 Alkalinity Feeding Back into Biological Evolution: Fourth Milestone 10.7.5 Response of Climate to the Enhanced Subduction of Pelagic Carbonates 10.8 The Way Forward 10.9 Limits to Knowledge and Unknowns Acknowledgments Questions for the Classroom References Appendix to Chapter 10 How Do Subduction Zones Regulate the Carbon Cycle? Supplementary Material: Description of the Model References 11 A Framework for Understanding Whole-Earth Carbon Cycling 11.1 Introduction 11.2 Basic Concepts of Elemental Cycling 11.2.1 Steady State and Residence Time 11.2.2 Climatic Drivers versus Negative Feedbacks 11.2.3 When Systems Transition to New Steady States 11.3 Carbon Inventories of Earth Reservoirs 11.3.1 Modern and Primitive Mantle Reservoirs 11.3.2 Continental Crust and Continental Lithospheric Mantle 11.3.3 Exogenic Reservoirs 11.4 Long-Term Carbon Fluxes 11.4.1 Inputs 11.4.1.1 Volcanic Inputs 11.4.1.2 Metamorphic Inputs 11.4.1.3 Carbonate and Organic Carbon Weathering 11.4.1.4 Carbon Inputs Internal to the Exogenic System 11.4.2 Carbon Outputs 11.4.2.1 Silicate Weathering Chemistry and Carbonate Precipitation 11.4.2.2 Photosynthesis and Organic Carbon Burial 11.4.2.3 Subduction Flux 11.5 Efficiency of the Silicate Weathering Feedback 11.5.1 Seafloor Weathering Feedback 11.6 Discussion 11.6.1 Framework for Modeling Whole-Earth C Cycling 11.6.2 Is Earth's Mantle Degassing or ''Ingassing''? 11.6.3 What Drives Greenhouse and Icehouse Conditions? 11.6.3.1 Greenhouse Intervals 11.6.3.2 Icehouse Drivers 11.6.4 Climatic Excursions and Runaways 11.6.4.1 Hothouses 11.6.4.2 Snowballs 11.7 Summary and Further Research Directions Acknowledgments References 12 The Influence of Nanoporosity on the Behavior of Carbon-Bearing Fluids 12.1 Introduction 12.2 Nanopore Earth Materials and Fluids 12.2.1 Nanopore Features 12.2.2 Fluid Properties Affected by Nanoconfinement 12.3 Form and Movement: Transport Mechanisms under Nanoconfinement 12.3.1 Steric Effects Enhance Surface versus Pore Diffusion 12.3.2 Molecular Lubrication Enhances Pore Diffusion 12.3.3 Molecular Hurdles Due to Strong Fluid–Fluid Interactions 12.3.4 Transport of Guest Molecules in Confined Fluids 12.3.5 Transport of Aqueous Electrolytes in Narrow Pores 12.4 Form and Quantity: Confinement Effects on Solubility 12.4.1 Volatile Gas Solubility in Confined Liquids 12.4.2 Aqueous Electrolytes in Confinement 12.4.3 Dielectric Constant of Nanoconfined Water 12.5 Form and Origin: Confinement Effects on Reactivity 12.5.1 General Concept 12.5.2 Methanation of Carbon Dioxide 12.6 Summary and Opportunities Acknowledgments Questions for the Classroom References 13 A Two-Dimensional Perspective on CH4 Isotope Clumping: Distinguishing Process from Source 13.1 Introduction 13.2 Temperature 13.3 Criteria for Intra-CH4 Thermodynamic Equilibrium 13.4 Kinetics 13.5 The Microbial Array 13.6 Is This New Information Helping? 13.7 The Effects of Oxidation on Δ12CH2D2 and Δ13CH3D 13.8 Conclusions 13.9 Limits to Knowledge and Unknowns Acknowledgments Questions for the Classroom References 14 Earth as Organic Chemist 14.1 Introduction: The Disconnect between Earth and the Lab 14.2 The Setting for Organic Transformations in the Deep Carbon Cycle 14.3 Hydration/Dehydration as Examples of Elimination Reactions 14.4 Dehydrogenation/Hydrogenation Reactions 14.5 Organic Oxidations 14.6 Amination/Deamination as Examples of Substitution Reactions 14.7 When Organic Molecules Combine: Disproportionation Reactions and Electrophilic Aromatic Substitutions 14.8 Summary of Hydrothermal Organic Transformations 14.9 Organic Reactions in the Deep Carbon Cycle 14.10 Geomimicry as a New Paradigm for Green Chemistry Questions for the Classroom References 15 New Perspectives on Abiotic Organic Synthesis and Processing during Hydrothermal Alteration of the Oceanic Lithosphere 15.1 Introduction 15.2 Carbonaceous Matter in Hydrothermally Altered, Mantle-Derived Rocks 15.2.1 Bulk Rock Investigations 15.2.2 In Situ Investigations at the Microscale 15.2.3 Carbon in Fluid Inclusions Trapped in the Oceanic Lithosphere 15.3 Comparison with Experiments and Thermodynamic Predictions 15.3.1 Experimental Approach 15.3.2 Carbon-Bearing Reactants in Experiments 15.3.3 Experimental Occurrences of Carbonaceous Material 15.3.4 Thermodynamic Predictions 15.4 Summary 15.5 Limits to Knowledge and Unknowns Acknowledgments Questions for the Classroom References 16 Carbon in the Deep Biosphere: Forms, Fates, and Biogeochemical Cycling 16.1 Introduction 16.2 Oceanic Sedimentary Subsurface 16.2.1 Chemical Composition 16.2.2 Bulk Controls on OM Preservation 16.2.3 Sorption 16.2.4 Oxygen Exposure Time 16.2.5 Models of Organic Carbon Diagenesis 16.3 Oceanic Rocky Subsurface 16.3.1 Characteristics of Recharge Water 16.3.2 Axial High Temperature, Basalt Hosted 16.3.3 Axial Diffuse Vents, Basalt Hosted 16.3.4 Ridge Flanks 16.3.5 Ultramafic Influenced 16.3.6 Fluxes between the Ocean and Crust 16.4 Sedimented Hydrothermal Systems 16.5 Continental Subsurface 16.5.1 Types of Continental Deep Subsurface Environments 16.5.2 Continental Carbon Cycling 16.5.3 Sedimentary and Igneous Aquifers 16.5.4 Hydrocarbon Reservoirs 16.5.5 Deep Coal Beds 16.5.6 Deep Bedrock 16.6 Conclusion 16.6.1 Broad Similarities across Systems 16.6.2 Limits to Knowledge and Unknowns Acknowledgments Questions for the Classroom References 17 Biogeography, Ecology, and Evolution of Deep Life 17.1 Subsurface Biomes and Their Inhabitants 17.1.1 Continental Subsurface 17.1.2 Sub-seafloor Sediments 17.1.3 Oceanic Crust 17.1.3.1 Warm Anoxic Basement 17.1.3.2 Cold, Oxic Basement 17.1.4 Ultra-basic Sites 17.1.5 Other Subsurface Environments 17.2 Global Trends in Subsurface Microbiology 17.2.1 Archaea and Bacteria 17.2.2 Subsurface Isolates and Interactions 17.2.3 Subsurface Eukaryotes 17.2.4 Subsurface Viruses 17.3 Subsurface Ecology and Evolution 17.3.1 Physical Extremes in the Deep Subsurface 17.3.1.1 Diffusivity 17.3.1.2 pH 17.3.1.3 Salinity 17.3.1.4 Temperature 17.3.2 Adaptations for Survival at the Extremes 17.3.3 Evolution of Deep Life 17.4 Conclusion Acknowledgments Questions for the Classroom List of Online Resources References 18 The Genetics, Biochemistry, and Biophysics of Carbon Cycling by Deep Life 18.1 Introduction 18.2 Genetic Potential of Subsurface Environments 18.3 Biogeochemistry of Deep Subsurface Life 18.3.1 Microbial Metabolism in the Deep Subsurface 18.3.2 Predicting Functions of Novel Genes 18.3.3 Cellular Bioenergetics 18.4 Pressure Effects 18.4.1 Extreme Molecular Biophysics 18.4.2 Extreme Cellular Biophysics 18.5 Limits to Knowledge and Unknowns Acknowledgments Questions for the Classroom References 19 Energy Limits for Life in the Subsurface 19.1 Introduction 19.2 Microbial States 19.3 Gibbs Energy: Where It Comes from and How to Use It 19.4 Temperature, Pressure, and Composition Affecting G 19.5 Surveying Gibbs Energies in Natural Systems 19.6 Energy Density 19.7 Time 19.8 The Cost of Anabolism 19.9 Concluding Remarks Acknowledgments Questions for the Classroom References 20 Deep Carbon through Deep Time: Data-Driven Insights 20.1 Introduction: Data and the Deep Carbon Observatory 20.2 Use Case #1: Global Signatures of Supercontinent Assembly 20.2.1 Mineralogical Evidence 20.2.2 Trace Element Distributions 20.2.3 Why Is Rodinian Assembly Unique? 20.2.4 Implications for the Carbon Cycle 20.3 Use Case #2: Carbon Mineral Evolution, Mineral Ecology, and Mineral Network Analysis 20.3.1 Carbon Mineral Evolution 20.3.2 Carbon Mineral Ecology 20.3.3 Carbon Mineral Network Analysis 20.4 Use Case #3: Enzyme Evolution and the Environmental Control of Protein Expression 20.4.1 Network Analysis of Protein Structures: Geo–Bio Interactions on Evolutionary Scales 20.4.2 Network Analysis of Extant Microbial Ecosystems: Geo–Bio Interactions on Ecological Scales 20.5 Conclusions: The Future of Data-Driven Discovery Acknowledgments Questions for the Classroom References Index