ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Data Wrangling Using Pandas, SQL, and Java

دانلود کتاب جدال داده ها با استفاده از پانداها، SQL و جاوا

Data Wrangling Using Pandas, SQL, and Java

مشخصات کتاب

Data Wrangling Using Pandas, SQL, and Java

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 1683929047, 9781683929048 
ناشر: Mercury Learning and Information 
سال نشر: 2022 
تعداد صفحات: 300
[275] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 2 Mb 

قیمت کتاب (تومان) : 41,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Data Wrangling Using Pandas, SQL, and Java به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب جدال داده ها با استفاده از پانداها، SQL و جاوا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب جدال داده ها با استفاده از پانداها، SQL و جاوا

این کتاب در درجه اول برای کسانی در نظر گرفته شده است که قصد دارند دانشمند داده شوند و همچنین برای افرادی که نیاز به انجام وظایف پاکسازی داده دارند. این شامل انواع ویژگی های NumPy و Pandas و نحوه ایجاد پایگاه داده و جداول در MySQL است. فصل 7 بسیاری از وظایف جدال داده ها را با استفاده از اسکریپت های پایتون و اسکریپت های پوسته مبتنی بر awk پوشش می دهد. فایل های همراه با کد برای دانلود از ناشر موجود است. ویژگی ها: مفاهیم اولیه برنامه نویسی پایتون 3، جاوا و پاندا را در اختیار خواننده قرار می دهد و مقدمه ای برای awk شامل فصلی در مورد فایل های RDBM و SQL Companion با کد است.


توضیحاتی درمورد کتاب به خارجی

This book is intended primarily for those who plan to become data scientists as wellas anyone who needs to perform data cleaning tasks. It contains a variety of features of NumPy and Pandas and how to create databases and tables in MySQL. Chapter 7 covers many data wrangling tasks using Python scripts and awk-based shell scripts. Companion files with code are available for downloading from the publisher. Features: Provides the reader with basic Python 3, Java, and Pandas programming concepts, and an introduction to awk Includes a chapter on RDBMs and SQL Companion files with code



فهرست مطالب

Cover
Title Page
Copyright
Dedication
Contents
Preface
Chapter 1: Introduction to Python
	Tools for Python
		easy_install and pip
		virtualenv
		IPython
	Python Installation
	Setting the PATH Environment Variable (Windows Only)
	Launching Python on Your Machine
		The Python Interactive Interpreter
	Python Identifiers
	Lines, Indentation, and Multi-Lines
	Quotation and Comments
	Saving Your Code in a Module
	Some Standard Modules
	The help() and dir() Functions
	Compile Time and Runtime Code Checking
	Simple Data Types
	Working with Numbers
		Working with Other Bases
		The chr() Function
		The round() Function in Python
		Formatting Numbers in Python
	Working with Fractions
	Unicode and UTF-8
	Working with Unicode
	Working with Strings
		Comparing Strings
		Formatting Strings in Python
	Uninitialized Variables and the Value None
	Slicing and Splicing Strings
		Testing for Digits and Alphabetic Characters
	Search and Replace a String in Other Strings
	Remove Leading and Trailing Characters
	Printing Text Without NewLine Characters
	Text Alignment
	Working with Dates
		Converting Strings to Dates
	Exception Handling
	Handling User Input
	Command-Line Arguments
	Summary
Chapter 2: Working with Data
	Dealing with Data: What Can Go Wrong?
		What is Data Drift?
	What are Datasets?
		Data Preprocessing
	Data Types
	Preparing Datasets
		Discrete Data vs. Continuous Data
		“Binning” Continuous Data
		Scaling Numeric Data via Normalization
		Scaling Numeric Data via Standardization
		Scaling Numeric Data via Robust Standardization
		What to Look for in Categorical Data
		Mapping Categorical Data to Numeric Values
		Working with Dates
		Working with Currency
	Working with Outliers and Anomalies
		Outlier Detection/Removal
	Finding Outliers with NumPy
	Finding Outliers with Pandas
		Calculating Z-Scores to Find Outliers
	Finding Outliers with SkLearn (Optional)
	Working with Missing Data
		Imputing Values: When is Zero a Valid Value?
	Dealing with Imbalanced Datasets
	What is SMOTE?
		SMOTE Extensions
	The Bias-Variance Tradeoff
		Types of Bias in Data
	Analyzing Classifiers (Optional)
		What is LIME?
		What is ANOVA?
	Summary
Chapter 3: Introduction to Pandas
	What is Pandas?
		Pandas Data Frames
		Data Frames and Data Cleaning Tasks
	A Pandas Data Frame Example
	Describing a Pandas Data Frame
	Pandas Boolean Data Frames
		Transposing a Pandas Data Frame
	Pandas Data Frames and Random Numbers
	Converting Categorical Data to Numeric Data
	Merging and Splitting Columns in Pandas
	Combining Pandas Data Frames
	Data Manipulation with Pandas Data Frames
	Pandas Data Frames and CSV Files
		Useful Options for the Pandas read_csv() Function
		Reading Selected Rows from CSV Files
	Pandas Data Frames and Excel Spreadsheets
		Useful Options for Reading Excel Spreadsheets
	Select, Add, and Delete Columns in Data Frames
	Handling Outliers in Pandas
	Pandas Data Frames and Simple Statistics
	Finding Duplicate Rows in Pandas
	Finding Missing Values in Pandas
	Missing Values in an Iris-Based Dataset
	Sorting Data Frames in Pandas
	Working with groupby() in Pandas
	Aggregate Operations with the titanic.csv Dataset
	Working with apply() and mapapply() in Pandas
	Useful One-line Commands in Pandas
	Working with JSON-based Data
		Python Dictionary and JSON
		Python, Pandas, and JSON
	Summary
Chapter 4: RDBMS and SQL
	What is an RDBMS?
		What Relationships Do Tables Have in an RDBMS?
		Features of an RDBMS
		What is ACID?
	When Do We Need an RDBMS?
	The Importance of Normalization
	A Four-Table RDBMS
	Detailed Table Descriptions
		The customers Table
		The purchase_orders Table
		The line_items Table
		The item_desc Table
	What is SQL?
		DCL, DDL, DQL, DML, and TCL
		SQL Privileges
	Properties of SQL Statements
		The CREATE Keyword
	What is MySQL?
		What about MariaDB?
		Installing MySQL
	Data Types in MySQL
		The CHAR and VARCHAR Data Types
		String-based Data Types
		FLOAT and DOUBLE Data Types
		BLOB and TEXT Data Types
	MySQL Database Operations
		Creating a Database
		Display a List of Databases
		Display a List of Database Users
		Dropping a Database
	Exporting a Database
	Renaming a Database
	The INFORMATION_SCHEMA Table
	The PROCESSLIST Table
	SQL Formatting Tools
	Summary
Chapter 5: Java, JSON, and XML
	Working with Java and MySQL
		Performing the Set-up Steps
	Creating a MySQL Database in Java
	Creating a MySQL Table in Java
	Inserting Data into a MySQL Table in Java
	Deleting Data and Dropping MySQL Tables in Java
	Selecting Data from a MySQL Table in Java
	Updating Data in a MySQL Table in Java
	Working with JSON, MySQL, and Java
	Select JSON-based Data from a MySQL Table in Java
	Working with XML, MySQL, and Java
		What is XML?
	What is an XML Schema?
		When are XML Schemas Useful?
	Create a MySQL Table for XML Data in Java
	Read an XML Document in Java
	Read an XML Document as a String in Java
	Insert XML-based Data into a MySQL Table in Java
	Select XML-based Data from a MySQL Table in Java
	Parse XML-based String Data from a MySQL Table in Java
	Working with XML Schemas
	Summary
Chapter 6: Data Cleaning Tasks
	What is Data Cleaning?
		Data Cleaning for Personal Titles
	Data Cleaning in SQL
		Replace NULL with 0
		Replace NULL Values with Average Value
	Replace Multiple Values with a Single Value
	Handle Mismatched Attribute Values
	Convert Strings to Date Values
	Data Cleaning from the Command Line (Optional)
		Working with the sed Utility
	Working with Variable Column Counts
	Truncating Rows in CSV Files
	Generating Rows with Fixed Columns with the awk Utility
	Converting Phone Numbers
	Converting Numeric Date Formats
	Converting Alphabetic Date Formats
	Working with Date and Time Date Formats
	Working with Codes, Countries, and Cities
	Data Cleaning on a Kaggle Dataset
	Summary
Chapter 7: Data Wrangling
	What is Data Wrangling?
		Data Transformation: What Does This Mean?
	CSV Files with Multi-Row Records
		Pandas Solution (1)
		Pandas Solution (2)
		CSV Solution
	CSV Files, Multi-row Records, and the awk Command
	Quoted Fields Split on Two Lines (Optional)
	Overview of the Events Project
		Why This Project?
		Project Tasks
		Generate Country Codes
		Prepare a List of Cities in Countries
	Generating City Codes from Country Codes: awk
	Generating City Codes from Country Codes: Python
	Generating SQL Statements for the city_codes Table
	Generating a CSV File for Band Members (Java)
	Generating a CSV File for Band Members (Python)
	Generating a Calendar of Events (COE)
	Project Automation Script
		Project Follow-up Comments
	Summary
Appendix A: Working with awk
	The awk Command
		Built-in Variables That Control awk
		How Does the awk Command Work?
	Aligning Text with the printf() Statement
	Conditional Logic and Control Statements
		The while Statement
		A for Loop in awk
		A for Loop with a break Statement
		The next and continue Statements
	Deleting Alternate Lines in Datasets
	Merging Lines in Datasets
		Printing File Contents as a Single Line
		Joining Groups of Lines in a Text File
		Joining Alternate Lines in a Text File
	Matching with Meta Characters and Character Sets
	Printing Lines Using Conditional Logic
	Splitting Filenames with awk
	Working with Postfix Arithmetic Operators
	Numeric Functions in awk
	One-line awk Commands
	Useful Short awk Scripts
	Printing the Words in a Text String in awk
	Count Occurrences of a String in Specific Rows
	Printing a String in a Fixed Number of Columns
	Printing a Dataset in a Fixed Number of Columns
	Aligning Columns in Datasets
	Aligning Columns and Multiple Rows in Datasets
	Removing a Column from a Text File
	Subsets of Column-aligned Rows in Datasets
	Counting Word Frequency in Datasets
	Displaying Only “Pure” Words in a Dataset
	Working with Multi-line Records in awk
	A Simple Use Case
	Another Use Case
	Summary
Index




نظرات کاربران