دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Uzzal Sharma (editor), Parma Nand (editor), Jyotir Moy Chatterjee (editor), Vishal Jain (editor), Noor Zaman Jhanjhi (editor), R. Sujatha (editor) سری: ISBN (شابک) : 1119836190, 9781119836193 ناشر: Wiley-Scrivener سال نشر: 2022 تعداد صفحات: 340 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Cyber-Physical Systems: Foundations and Techniques به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستمهای فیزیکی-سایبری: مبانی و تکنیکها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
13 فصل این کتاب جنبههای مختلف مرتبط با سیستمهای فیزیکی سایبری (CPS) مانند الگوریتمها، حوزههای کاربردی و بهبود فناوری موجود را پوشش میدهد. به عنوان یادگیری ماشینی، داده های بزرگ و روباتیک.
سیستم های فیزیکی-سایبری (CPS) ارتباط متقابل مجازی یا سایبری و سیستم فیزیکی است. این با ترکیب سه فناوری شناخته شده به نامهای «سیستمهای تعبیهشده»، «سنسورها و محرکها» و «سیستمهای شبکه و ارتباطات» محقق میشود. این فناوریها با هم ترکیب میشوند و سیستمی به نام CPS را تشکیل میدهند. در CPS، فرآیند فیزیکی و پردازش اطلاعات به قدری به هم مرتبط هستند که تشخیص مشارکت فردی هر فرآیند از خروجی دشوار است. برخی از نوآوریهای هیجانانگیز مانند اتومبیلهای خودران، کوادکوپتر، سفینههای فضایی، دستگاههای پزشکی پیچیده تحت CPS قرار میگیرند.
دامنه CPS بسیار زیاد است. در CPS، می توان کاربردهای مختلف فناوری های نوظهور مانند هوش مصنوعی (AI)، اینترنت اشیاء (IoT)، یادگیری ماشینی (ML)، یادگیری عمیق (DL)، داده های بزرگ (BD)، روباتیک، فناوری کوانتومی و غیره را مشاهده کرد. تقریباً در همه بخشها، اعم از آموزش، سلامت، توسعه منابع انسانی، بهبود مهارت، استراتژی استارتآپ و غیره، به دلیل ظهور CPS در این حوزه، شاهد بهبود کیفیت خروجی هستیم.
مخاطبان
پژوهشگران فناوری اطلاعات، هوش مصنوعی، روباتیک، الکترونیک و
مهندسی برق.
The 13 chapters in this book cover the various aspects associated with Cyber-Physical Systems (CPS) such as algorithms, application areas, and the improvement of existing technology such as machine learning, big data and robotics.
Cyber-Physical Systems (CPS) is the interconnection of the virtual or cyber and the physical system. It is realized by combining three well-known technologies, namely “Embedded Systems,” “Sensors and Actuators,” and “Network and Communication Systems.” These technologies combine to form a system known as CPS. In CPS, the physical process and information processing are so tightly connected that it is hard to distinguish the individual contribution of each process from the output. Some exciting innovations such as autonomous cars, quadcopter, spaceships, sophisticated medical devices fall under CPS.
The scope of CPS is tremendous. In CPS, one sees the applications of various emerging technologies such as artificial intelligence (AI), Internet of Things (IoT), machine learning (ML), deep learning (DL), big data (BD), robotics, quantum technology, etc. In almost all sectors, whether it is education, health, human resource development, skill improvement, startup strategy, etc., one sees an enhancement in the quality of output because of the emergence of CPS into the field.
Audience
Researchers in Information technology, artificial
intelligence, robotics, electronics and electrical
engineering.
Cover Half-Title Page Series Page Title Page Copyright Page Contents Preface Acknowledgement 1 A Systematic Literature Review on Cyber Security Threats of Industrial Internet of Things 1.1 Introduction 1.2 Background of Industrial Internet of Things 1.3 Literature Review 1.4 The Proposed Methodology 1.5 Experimental Requirements 1.6 Conclusion References 2 Integration of Big Data Analytics Into Cyber-Physical Systems 2.1 Introduction 2.2 Big Data Model for Cyber-Physical System 2.2.1 Cyber-Physical System Architecture 2.2.2 Big Data Analytics Model 2.3 Big Data and Cyber-Physical System Integration 2.3.1 Big Data Analytics and Cyber-Physical System 2.3.1.1 Integration of CPS With BDA 2.3.1.2 Control and Management of Cyber-Physical System With Big Data Analytics 2.3.2 Issues and Challenges for Big Data-Enabled Cyber-Physical System 2.4 Storage and Communication of Big Data for Cyber-Physical System 2.4.1 Big Data Storage for Cyber-Physical System 2.4.2 Big Data Communication for Cyber-Physical System 2.5 Big Data Processing in Cyber-Physical System 2.5.1 Data Processing 2.5.1.1 Data Processing in the Cloud and Multi-Cloud Computing 2.5.1.2 Clustering in Big Data 2.5.1.3 Clustering in Cyber-Physical System 2.5.2 Big Data Analytics 2.6 Applications of Big Data for Cyber-Physical System 2.6.1 Manufacturing 2.6.2 Smart Grids and Smart Cities 2.6.3 Healthcare 2.6.4 Smart Transportation 2.7 Security and Privacy 2.8 Conclusion References 3 Machine Learning: A Key Towards Smart Cyber-Physical Systems 3.1 Introduction 3.2 Different Machine Learning Algorithms 3.2.1 Performance Measures for Machine Learning Algorithms 3.2.2 Steps to Implement ML Algorithms 3.2.3 Various Platforms Available for Implementation 3.2.4 Applications of Machine Learning in Electrical Engineering 3.3 ML Use-Case in MATLAB 3.4 ML Use-Case in Python 3.4.1 ML Model Deployment 3.5 Conclusion References 4 Precise Risk Assessment and Management 4.1 Introduction 4.2 Need for Security 4.2.1 Confidentiality 4.2.2 Integrity 4.2.3 Availability 4.2.4 Accountability 4.2.5 Auditing 4.3 Different Kinds of Attacks 4.3.1 Malware 4.3.2 Man-in-the-Middle Assault 4.3.3 Brute Force Assault 4.3.4 Distributed Denial of Service 4.4 Literature Survey 4.5 Proposed Work 4.5.1 Objective 4.5.2 Notations Used in the Contribution 4.5.3 Methodology 4.5.4 Simulation and Analysis 4.6 Conclusion References 5 A Detailed Review on Security Issues in Layered Architectures and Distributed Denial Service of Attacks Over IoT Environment 5.1 Introduction 5.2 IoT Components, Layered Architectures, Security Threats 5.2.1 IoT Components 5.2.2 IoT Layered Architectures 5.2.2.1 3-Layer Architecture 5.2.2.2 4-Layer Architecture 5.2.2.3 5-Layer Architecture 5.2.3 Associated Threats in the Layers 5.2.3.1 Node Capture 5.2.3.2 Playback Attack 5.2.3.3 Fake Node Augmentation 5.2.3.4 Timing Attack 5.2.3.5 Bootstrap Attack 5.2.3.6 Jamming Attack 5.2.3.7 Kill Command Attack 5.2.3.8 Denial-of-Service (DoS) Attack 5.2.3.9 Storage Attack 5.2.3.10 Exploit Attack 5.2.3.11 Man-In-The-Middle (MITM) Attack 5.2.3.12 XSS Attack 5.2.3.13 Malicious Insider Attack 5.2.3.14 Malwares 5.2.3.15 Zero-Day Attack 5.3 Taxonomy of DDoS Attacks and Its Working Mechanism in IoT 5.3.1 Taxonomy of DDoS Attacks 5.3.1.1 Architectural Model 5.3.1.2 Exploited Vulnerability 5.3.1.3 Protocol Level 5.3.1.4 Degree of Automation 5.3.1.5 Scanning Techniques 5.3.1.6 Propagation Mechanism 5.3.1.7 Impact Over the Victim 5.3.1.8 Rate of Attack 5.3.1.9 Persistence of Agents 5.3.1.10 Validity of Source Address 5.3.1.11 Type of Victim 5.3.1.12 Attack Traffic Distribution 5.3.2 Working Mechanism of DDoS Attack 5.4 Existing Solution Mechanisms Against DDoS Over IoT 5.4.1 Detection Techniques 5.4.2 Prevention Mechanisms 5.5 Challenges and Research Directions 5.6 Conclusion References 6 Machine Learning and Deep Learning Techniques for Phishing Threats and Challenges 6.1 Introduction 6.2 Phishing Threats 6.2.1 Internet Fraud 6.2.1.1 Electronic-Mail Fraud 6.2.1.2 Phishing Extortion 6.2.1.3 Extortion Fraud 6.2.1.4 Social Media Fraud 6.2.1.5 Tourism Fraud 6.2.1.6 Excise Fraud 6.2.2 Phishing 6.3 Deep Learning Architectures 6.3.1 Convolution Neural Network (CNN) Models 6.3.1.1 Recurrent Neural Network 6.3.1.2 Long Short-Term Memory (LSTM) 6.4 Related Work 6.4.1 Machine Learning Approach 6.4.2 Neural Network Approach 6.4.3 Deep Learning Approach 6.5 Analysis Report 6.6 Current Challenges 6.6.1 File-Less Malware 6.6.2 Crypto Mining 6.7 Conclusions References 7 Novel Defending and Prevention Technique for Man-in-the-Middle Attacks in Cyber-Physical Networks 7.1 Introduction 7.2 Literature Review 7.3 Classification of Attacks 7.3.1 The Perception Layer Network Attacks 7.3.2 Network Attacks on the Application Control Layer 7.3.3 Data Transmission Layer Network Attacks 7.3.3.1 Rogue Access Point 7.3.3.2 ARP Spoofing 7.3.3.3 DNS Spoofing 7.3.3.4 mDNS Spoofing 7.3.3.5 SSL Stripping 7.4 Proposed Algorithm of Detection and Prevention 7.4.1 ARP Spoofing 7.4.2 Rogue Access Point and SSL Stripping 7.4.3 DNS Spoofing 7.5 Results and Discussion 7.6 Conclusion and Future Scope References 8 Fourth Order Interleaved Boost Converter With PID, Type II and Type III Controllers for Smart Grid Applications 8.1 Introduction 8.2 Modeling of Fourth Order Interleaved Boost Converter 8.2.1 Introduction to the Topology 8.2.2 Modeling of FIBC 8.2.2.1 Mode 1 Operation (0 to d₁Ts) 8.2.2.2 Mode 2 Operation (d₁Ts to d₂Ts) 8.2.2.3 Mode 3 Operation (d₂Ts to d₃Ts) 8.2.2.4 Mode 4 Operation (d₃Ts to Ts) 8.2.3 Averaging of the Model 8.2.4 Small Signal Analysis 8.3 Controller Design for FIBC 8.3.1 PID Controller 8.3.2 Type II Controller 8.3.3 Type III Controller 8.4 Computational Results 8.5 Conclusion References 9 Industry 4.0 in Healthcare IoT for Inventory and Supply Chain Management 9.1 Introduction 9.1.1 RFID and IoT for Smart Inventory Management 9.2 Benefits and Barriers in Implementation of RFID 9.2.1 Benefits 9.2.1.1 Routine Automation 9.2.1.2 Improvement in the Visibility of Assets and Quick Availability 9.2.1.3 SCM-Business Benefits 9.2.1.4 Automated Lost and Found 9.2.1.5 Smart Investment on Inventory 9.2.1.6 Automated Patient Tracking 9.2.2 Barriers 9.2.2.1 RFID May Interfere With Medical Activities 9.2.2.2 Extra Maintenance for RFID Tags 9.2.2.3 Expense Overhead 9.2.2.4 Interoperability Issues 9.2.2.5 Security Issues 9.3 IoT-Based Inventory Management—Case Studies 9.4 Proposed Model for RFID-Based Hospital Management 9.5 Conclusion and Future Scope References 10 A Systematic Study of Security of Industrial IoT 10.1 Introduction 10.2 Overview of Industrial Internet of Things (Smart Manufacturing) 10.2.1 Key Enablers in Industry 4.0 10.2.2 OPC Unified Architecture (OPC UA) 10.3 Industrial Reference Architecture 10.3.1 Arrowgead 10.3.2 FIWARE 10.3.3 Industrial Internet Reference Architecture (IIRA) 10.3.4 Kaa IoT Platform 10.3.5 Open Connectivity Foundation (OCF) 10.3.6 Reference Architecture Model Industrie 4.0 (RAMI 4.0) 10.3.7 ThingsBoard 10.3.8 ThingSpeak 10.3.9 ThingWorx 10.4 FIWARE Generic Enabler (FIWARE GE) 10.4.1 Core Context Management GE 10.4.2 NGSI Context Data Model 10.4.3 IDAS IoT Agents 10.4.3.1 IoT Agent-JSON 10.4.3.2 IoT Agent-OPC UA 10.4.3.3 Context Provider 10.4.4 FIWARE for Smart Industry 10.5 Discussion 10.5.1 Solutions Adopting FIWARE 10.5.2 IoT Interoperability Testing 10.6 Conclusion References 11 Investigation of Holistic Approaches for Privacy Aware Design of Cyber-Physical Systems 11.1 Introduction 11.2 Popular Privacy Design Recommendations 11.2.1 Dynamic Authorization 11.2.2 End to End Security 11.2.3 Enrollment and Authentication APIs 11.2.4 Distributed Authorization 11.2.5 Decentralization Authentication 11.2.6 Interoperable Privacy Profiles 11.3 Current Privacy Challenges in CPS 11.4 Privacy Aware Design for CPS 11.5 Limitations 11.6 Converting Risks of Applying AI Into Advantages 11.6.1 Proof of Recognition and De-Anonymization 11.6.2 Segregation, Shamefulness, Mistakes 11.6.3 Haziness and Bias of Profiling 11.6.4 Abuse Arising From Information 11.6.5 Tips for CPS Designers Including AI in the CPS Ecosystem 11.7 Conclusion and Future Scope References 12 Exposing Security and Privacy Issues on Cyber-Physical Systems 12.1 Introduction to Cyber-Physical Systems (CPS) 12.2 Cyber-Attacks and Security in CPS 12.3 Privacy in CPS 12.4 Conclusion & Future Trends in CPS Security References 13 Applications of Cyber-Physical Systems 13.1 Introduction 13.2 Applications of Cyber-Physical Systems 13.2.1 Healthcare 13.2.1.1 Related Work 13.2.2 Education 13.2.2.1 Related Works 13.2.3 Agriculture 13.2.3.1 Related Work 13.2.4 Energy Management 13.2.4.1 Related Work 13.2.5 Smart Transportation 13.2.5.1 Related Work 13.2.6 Smart Manufacturing 13.2.6.1 Related Work 13.2.7 Smart Buildings: Smart Cities and Smart Houses 13.2.7.1 Related Work 13.3 Conclusion References Index EULA