ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Current Developments in Biotechnology and Bioengineering: Smart Solutions for Wastewater: Road-mapping the Transition to Circular Economy

دانلود کتاب تحولات کنونی در بیوتکنولوژی و مهندسی زیستی: راه حل های هوشمند برای فاضلاب: نقشه راه گذار به اقتصاد دایره ای

Current Developments in Biotechnology and Bioengineering: Smart Solutions for Wastewater: Road-mapping the Transition to Circular Economy

مشخصات کتاب

Current Developments in Biotechnology and Bioengineering: Smart Solutions for Wastewater: Road-mapping the Transition to Circular Economy

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 0323999204, 9780323999205 
ناشر: Elsevier 
سال نشر: 2022 
تعداد صفحات: 454
[455] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 14 Mb 

قیمت کتاب (تومان) : 43,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Current Developments in Biotechnology and Bioengineering: Smart Solutions for Wastewater: Road-mapping the Transition to Circular Economy به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تحولات کنونی در بیوتکنولوژی و مهندسی زیستی: راه حل های هوشمند برای فاضلاب: نقشه راه گذار به اقتصاد دایره ای نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تحولات کنونی در بیوتکنولوژی و مهندسی زیستی: راه حل های هوشمند برای فاضلاب: نقشه راه گذار به اقتصاد دایره ای

راه حل های هوشمند برای فاضلاب: نقشه راه انتقال به اقتصاد دایره ای، آخرین نسخه در تحولات کنونی در بیوتکنولوژی و مهندسی زیستی اطلاعات به روزی را در مورد تحقیقات و پیشرفت های فناوری بازیابی منابع در تصفیه فاضلاب از نظر کربن، مواد مغذی و انرژی. این کتاب شکاف‌ها و چالش‌های فعلی را که مانع استفاده از تسهیلات بازیابی منابع در تصفیه‌خانه‌های فاضلاب می‌شوند را برآورده می‌کند، شکاف‌های دانش را مورد بحث قرار می‌دهد، دیدگاه‌های تحقیقاتی آینده را ارائه می‌دهد و استراتژی‌هایی را برای حل مشکلات از منظر اقتصاد دایره‌ای مورد بحث قرار می‌دهد. این یک مرور کلی عالی، بین رشته ای و به روز از فناوری ها از نظر بازده بالقوه، حذف آلاینده ها، بازیابی مواد مغذی و تولید انرژی است. پوشش جنبه‌های مختلف فناوری‌های بازیابی منابع و شکاف‌های تحقیقاتی در تصفیه فاضلاب. تمرکز بر پیکربندی‌های مختلف MBR و سیستم‌ها/سیستم‌های هیبریدی در تصفیه طیف وسیعی از فاضلاب‌ها. استراتژی‌هایی برای غلبه بر محدودیت‌ها شامل فن‌آوری‌هایی برای مدیریت لجن فاضلاب به منظور ایجاد راه‌حل‌هایی برای بازیابی در زمینه اقتصاد دایره‌ای است.


توضیحاتی درمورد کتاب به خارجی

Smart Solutions for Wastewater: Road-mapping the Transition to Circular Economy, the latest release in the Current Developments in Biotechnology and Bioengineering presents up-to-date information on research and technological developments of resource recovery in wastewater treatment in terms of carbon, nutrients and energy. The book fulfils the gaps and current challenges that hinder the application of resource recovery facilities in wastewater treatment plants, discusses knowledge gaps, provides future research perspectives, and discusses strategies to solve problems from a circular economy perspective. It is an excellent, interdisciplinary and updated overview of technologies in terms of potential yields, pollutants removal, nutrients recovery and energy production. Covers different aspects of resource recovery technologies and research gaps in wastewater treatment Focuses on different MBR configurations and systems/hybrid systems in treating a large variety of wastewaters Provides state-of-the-art technology developments, including technology, advantages and challenges as well as strategies to overcome limitations Includes technologies for managing sewage sludge in order to foster solutions for recovering in a circular economy context



فهرست مطالب

Cover



Contents
Contributors
Preface
1 - Introduction to smart solutions for wastewater: Road-mapping the transition to circular economy
	1.1 Introduction
	1.2 Water-smart solutions to enhance the transition to circular economy
	1.3 Conclusions and perspectives
	Acknowledgments
	References
2 - Treatment and disposal of sewage sludge from wastewater in a circular economy perspective
	2.1 Introduction
	2.2 European laws
		2.2.1 European directives on SS and wastewater treatments
		2.2.2 Revision of the SSD
	2.3 SS management
		2.3.1 Increase in the SS production
		2.3.2 SS disposal and costs
		2.3.3 Environmental impact
	2.4 SS reuse
		2.4.1 Land applications
		2.4.2 Energy recovery
		2.4.3 Construction materials
		2.4.4 Drawbacks and limitations
	2.5 Conclusions and perspectives
	Acknowledgements
	References
3 - Integration of polyhydroxyalkanoates (PHAs) production into urban wastewater treatment plants
	3.1 Introduction
	3.2 PHAs: biobased and biodegradable alternative to plastics
		3.2.1 Properties and applications
		3.2.2 Current industrial production methods and developments
	3.3 A circular economy approach: PHA production integrated into WWTPs
	3.4 A detailed view of the independent PEs for PHA production by using MMCs
		3.4.1 Substrate acidogenic fermentation (PE1)
		3.4.2 Culture selection (PE2)
		3.4.3 PHA accumulation (PE3)
	3.5 PHAs extraction from microbial cells (PE4)
		3.5.1 Solvent extraction
		3.5.2 NPCM digestion
		3.5.3 Influence of the type of extraction on polymer properties
	3.6 Economic sustainability of PHAs production process
	3.7 Conclusions and perspectives
	Acknowledgments
	References
4 - Production of volatile fatty acids from sewage sludge fermentation
	4.1 Introduction
	4.2 Biological mechanism and strategies for VFA production from sewage sludge
		4.2.1 Biological mechanism of sludge anaerobic fermentation
		4.2.2 Influence of key operational conditions on VFA production
			4.2.2.1 Influence of temperature
			4.2.2.2 Influence of pH
			4.2.2.3 Influence of retention time
			4.2.2.4 Influence of OLR
			4.2.2.5 Influence of other factors
		4.2.3 Influence of sludge composition and carbon to nitrogen (C/N) ratio on VFA production
		4.2.4 Control strategies for enhancing VFA production
			4.2.4.1 Hydrolysis improvement
			4.2.4.2 Acidification enhancement
			4.2.4.3 Methanogenesis inhibition
	4.3 Trends and innovations in VFA production from sewage sludge
		4.3.1 Sludge pretreatments
			4.3.1.1 Chemical pretreatments
			4.3.1.2 Physical pretreatments
			4.3.1.3 Biological pretreatments
			4.3.1.4 Hybrid pretreatments
		4.3.2 Fermentation reactor configurations
		4.3.3 Enhanced strategies for VFA production from sludge fermentation
	4.4 Final applications of sludge-derived VFA and economic evaluation
		4.4.1 Sludge-derived VFA applications
			4.4.1.1 Carbon source for nutrient removal in WWTP
			4.4.1.2 Polyhydroxyalkanoates production
		4.4.2 Economical evaluation of VFA production from sewage sludge
	4.5 Conclusions and perspectives
	Acknowledgments
	References
5 - Zeolites for the nutrient recovery from wastewater
	5.1 Introduction
	5.2 Structure and chemical composition of zeolites
		5.2.1 Chemical composition and structure of zeolites
			5.2.1.1 Primary and secondary building units of zeolites
			5.2.1.2 Pores, cages, and channels
			5.2.1.3 Cation exchange capacity of zeolites
			5.2.1.4 Selectivity of zeolites
	5.3 Natural zeolites and synthetic zeolites
		5.3.1 Natural zeolites
			5.3.1.1 Most important natural zeolites
				Clinoptilolite-heulandite
				Chabazite
				Phillipsite
		5.3.2 Synthetic zeolites
			5.3.2.1 Most important synthetic zeolites
				Zeolite A
				Zeolite X and zeolite Y
				Zeolite ZMS-5
	5.4 Applications of zeolites
		5.4.1 Catalysis
		5.4.2 Agriculture
		5.4.3 Industrial wastewater treatment
	5.5 Use of zeolite for nutrients recovery
		5.5.1 Nutrients recovery mechanism
		5.5.2 Regeneration of zeolites
		5.5.3 Reuse of enriched zeolites
	5.6 Conclusions and perspectives
	Acknowledgments
	References
6 - Wastewater treatment sludge composting
	6.1 Introduction
	6.2 Legislation about sewage sludge
		6.2.1 European legislation
			6.2.1.1 Directive 86/278/CEE
			6.2.1.2 Revisions of Directive 86/278/EEC
			6.2.1.3 Regulation (EU) 2019/1009
		6.2.2 Italian legislation
			6.2.2.1 Legislative Decree 99/92
			6.2.2.2 Art. 41 of the Legislative Decree No. 109/2018
			6.2.2.3 Upcoming regulatory developments for sludge in agriculture
		6.2.3 Sewage Sludge legislation in other countries
	6.3 Sewage sludge composting
		6.3.1 Composting
		6.3.2 Bulking agents
		6.3.3 Reuse of composted sewage sludge
	6.4 Conclusions and perspectives
	Acknowledgments
	References
7 - Advances in technologies for sewage sludge management
	7.1 Introduction
	7.2 Technologies in water treatment line
		7.2.1 Minimization technologies
			7.2.1.1 Chemical treatment
			7.2.1.2 Mechanical treatment
			7.2.1.3 Thermal treatment
			7.2.1.4 Biological treatment
	7.3 Technologies in sludge treatment line
		7.3.1 Sludge pretreatment
			7.3.1.1 Physical
			7.3.1.2 Chemical
			7.3.1.3 Biological
		7.3.2 Advanced digestion technologies
		7.3.3 Dewatering process
		7.3.4 Sludge drying
		7.3.5 Thermal processes
			7.3.5.1 Conventional thermal processes
			7.3.5.2 Hydrothermal carbonization (HTC)
	7.4 Evaluation and maturity of technologies for reducing sludge production
	7.5 Sludge characterization to optimize the dewatering process
	7.6 Conclusions and perspectives
	Acknowledgements
	References
8 - Energy and valuable organic products recovery from anaerobic processes
	8.1 Introduction
	8.2 Energy balance in wastewater treatment plants and potential energy recovery
	8.3 Potential valuable products recovery
	8.4 Anaerobic processes focused on liquid products recovery
		8.4.1 Production of volatile fatty acids
		8.4.2 Production of medium chain carboxylic acids
	8.5 Anaerobic digestion (AD) processes focused on gaseous products recovery
		8.5.1 Factors affecting AD
		8.5.2 Biogas characteristics, use and upgrading
		8.5.3 Other implications
			8.5.3.1 Regulations and policies
			8.5.3.2 Economic implications
	8.6 Processes enhancing energy and valuable organic products recovery
		8.6.1 Enhanced removal of suspended solids in primary clarifiers
		8.6.2 Sludge pretreatment
			8.6.2.1 Physical pretreatment methods
			8.6.2.2 Thermal pretreatment methods
			8.6.2.3 Chemical pretreatment methods
		8.6.3 Co-digestion of sewage sludge with organic waste
			8.6.3.1 Co-digestion for gaseous products recovery
			8.6.3.2 Co-digestion for liquid products recovery
	8.7 Conclusions and perspectives
	References
9 - Life-cycle assessment for resource recovery facilities in the wastewater sector
	9.1 Introduction
	9.2 Life-cycle analysis (LCA) as an environmental impact assessment methodology
		9.2.1 Defining the goal and scope as a starting point in environmental assessment
		9.2.2 Not all decentralized treatments are identical: selecting options on a case-by-case basis
			9.2.2.1 Combination of BW, KW, and GW treatments for a pellet biofertilizer manufacturing
			9.2.2.2 A simplistic option: focus on the BW treatment
			9.2.2.3 Approaching BW, KW, and GW treatments P-recovery as struvite
		9.2.3 Three decentralized-centralized combination options in the sludge line
			9.2.3.1 Conventional sludge treatment: hydroxyapatite recovery
			9.2.3.2 Renanite production from sludge incineration
			9.2.3.3 Nutrients recovery from sludge as struvite after thermal disintegration and anaerobic digestion
		9.2.4 Summary of configurations
		9.2.5 Moving forwards in the environmental assessment through primary and secondary data collection
		9.2.6 Turning inventory data into global environmental impacts
	9.3 Environmental diagnosis of the different alternatives based on the environmental outcomes
		9.3.1 Comparative environmental profiles between configurations
		9.3.2 Water line-based phosphorus recovery configurations
		9.3.3 Sludge line-based phosphorus recovery configurations
	9.4 Conclusions and perspectives
	Acknowledgements
	References
10 - Water reuse in the frame of circular economy
	10.1 Introduction
	10.2 Legal framework of water reuse
		10.2.1 Global water reuse guidelines and regulations
			10.2.1.1 World Health Organization (WHO)
			10.2.1.2 United Nations Environment Programme (UNEP)
			10.2.1.3 Food and Agriculture Organization (FAO)
	10.3 Worldwide used national water reuse guidelines and regulations
		10.3.1 US Environmental Protection Agency 2012, “Guidelines for Water Reuse,” EPA/600/R-12/618
	10.4 National water reuse guidelines and regulations in selected EU countries
		10.4.1 European Union water reuse legislation
			10.4.1.1 The purpose and scope of the Regulation
			10.4.1.2 Principal articles of the EU regulation No. 2020/741
				Annex I
				Annex II
		10.4.2 International ISO standards
			10.4.2.1 ISO 20670:2018
			10.4.2.2 ISO 16075-1:2020
			10.4.2.3 ISO 16075-2:2020
			10.4.2.4 ISO 16075-3:2021
			10.4.2.5 ISO 16075-4:2021
			10.4.2.6 ISO 16075-5:2021
			10.4.2.7 ISO/AWI 16075-6
			10.4.2.8 ISO 20419:2018
			10.4.2.9 ISO 20469:2018
			10.4.2.10 ISO 20761:2018
			10.4.2.11 ISO 20426:2018
		10.4.3 European standards
		10.4.4 Summary
	10.5 Drivers for water reuse: water resources scarcity and climate change; increasing quality and prize of drinking water; ...
		10.5.1 Climate change and water resources
		10.5.2 Water and climate stakeholder analysis
			10.5.2.1 Agriculture
			10.5.2.2 Energy production industry
			10.5.2.3 Drinking water production
			10.5.2.4 Other industries
			10.5.2.5 Ecosystems
	10.6 Circular economy and water resources
	10.7 Barriers of water reuse
		10.7.1 Barriers to water reuse implementation in general
		10.7.2 Safety barriers
		10.7.3 Economy of water reuse
		10.7.4 Public perception
		10.7.5 Wider uptake of water-smart solutions project in Prague, CZ
	10.8 Processes of recycled water production from effluents of municipal WWTPS
		10.8.1 Design of treatment process for recycled water production from effluents of municipal WWTPs
		10.8.2 Suspended solids and residual organics
			10.8.2.1 Filtration
			10.8.2.2 Coagulation and sedimentation
			10.8.2.3 Membrane filtration
			10.8.2.4 Other methods
		10.8.3 Pathogenic microorganisms
			10.8.3.1 Chlorination
			10.8.3.2 Ultraviolet (UV) irradiation
			10.8.3.3 Peracetic acid (PAA)
		10.8.4 Micropollutants
			10.8.4.1 Sorption to activated carbon
			10.8.4.2 Advanced oxidation processes and ozonation
			10.8.4.3 High-pressure membrane processes
	10.9 Examples of successful water reuse projects in Europe
		10.9.1 Overall situation of water recycling in Europe
		10.9.2 Environmental purposes
			10.9.2.1 Milano – two wastewater treatment plants supplying agricultural use in the large Lombardy region
			10.9.2.2 Barcelona – combination of water recycling and desalination for environmental purposes
			10.9.2.3 Irrigation of golf courses in Europe
		10.9.3 Urban use
			10.9.3.1 Disneyland Paris – recycled water use in an amusement park
			10.9.3.2 London – Queen Elizabeth Olympic Park
			10.9.3.3 Lisbon – multipurpose urban use
		10.9.4 Industrial use
			10.9.4.1 Madrid – not only industrial use
		10.9.5 Conclusions of examples of successful water reuse projects in Europe
	10.10 Conclusions and perspectives
	Acknowledgments
	References
11 - Governance factors influencing the scope for circular water solutions
	11.1 Introduction
	11.2 Toward a new paradigm
	11.3 Perceived governance challenges
	11.4 A multilevel approach
	11.5 Main drivers and barriers in the studied cases
		11.5.1 Water reuse in Sicily, the Czech Republic, and Ghana
			11.5.1.1 Pressures at the wider contexts level
			11.5.1.2 Tensions and lock-ins at the structural level
			11.5.1.3 Conducive and unconducive factors at the case-specific level
		11.5.2 Phosphorus recovery in Norway
			11.5.2.1 Pressures at the wider contexts level
			11.5.2.2 Tensions and lock-ins at the structural level
			11.5.2.3 Conducive and unconducive factors at the case-specific level
		11.5.3 Biocomposite production in the Netherlands
			11.5.3.1 Pressures at the wider contexts level
			11.5.3.2 Tensions and lock-ins at the structural level
			11.5.3.3 Conducive and unconducive factors at the case-specific level
	11.6 Contextual interactions and need for new governance perspectives
		11.6.1 Complex pressures changing over time
		11.6.2 Similarities and differences at the structural context level
		11.6.3 Case-specific opportunities and challenges
		11.6.4 Need for system perspective in governance for water CE
	11.7 Conclusions and perspectives
	Acknowledgments
	Appendix: List of abbreviations
	References
12 - Advances in environmental bioprocess technology for an effective transition to a green circular economy
	12.1 Introduction
	12.2 Promising biobased products for resource recovery at WWTPs
		12.2.1 Short-chain and medium-chain fatty acids
			12.2.1.1 Up-stream applications
			12.2.1.2 Poststream applications
				Biopolymers
				Single-cell protein
				Bioenergy
		12.2.2 Enzyme recovery
	12.3 Manipulation of microbial community performance for resource recovery
		12.3.1 Bioaugmentation
		12.3.2 Enrichment
		12.3.3 Encapsulation technology
	12.4 Conclusions and perspectives
	References
13 - Advanced technologies for a smart and integrated control of odour emissions from wastewater treatment plant
	13.1 Introduction
	13.2 Full-scale smart solutions for odour control with treatment and abatement solutions
		13.2.1 Smart odour treatment with biofilter system
		13.2.2 Smart odour treatment with biotrickling filter system
		13.2.3 Smart odour treatment with wet air scrubbing
		13.2.4 Other smart technologies for odour control and treatment
	13.3 Implementation of smart technologies
	13.4 Conclusions and perspectives
	References
14 - Microbial biotechnology for wastewater treatment into circular economy
	14.1 Introduction
	14.2 Metagenomics
		14.2.1 Taxonomical classification by 16S rDNA and ITS amplicon sequencing: metataxonomics
		14.2.2 Metataxomics: pipelines of analysis and software
		14.2.3 Whole-genome shotgun metagenomics (WGSM)
		14.2.4 Metagenomic insights into functions and compositions of microbial communities operating in WWTPs
	14.3 Metatranscriptomics
	14.4 Metaproteomics
	14.5 Resource recovery and energy production by microbial communities: from WWTPs to biorefineries
		14.5.1 Production of relevant biopolymers by microbial communities operating in WWTPs
		14.5.2 Valuable biogas in WWTPs for energy production
	14.6 Conclusions and perspectives
	References
15 - Biological nutrient recovery from wastewater for circular economy
	15.1 Introduction
	15.2 Anaerobic processes for nutrients recovery
		15.2.1 Anaerobic digestion
		15.2.2 Anaerobic membrane bioreactor
			15.2.2.1 Configurations of anaerobic membrane bioreactor
			15.2.2.2 Characteristics of membranes for anaerobic membrane reactor
				Membrane materials
				Membrane configuration
		15.2.3 Nutrient recovery utilizing the anaerobic process
			15.2.3.1 Nutrients recovery from the dewatered sludge
			15.2.3.2 Liquid fertilizer application of digestate for farmland
			15.2.3.3 Nitrogen recovery by ammonia stripping-absorption
			15.2.3.4 Phosphorus recovery as struvite
		15.2.4 Application, potentials, and challenges
	15.3 Photo-bioprocesses for nutrients recovery
		15.3.1 Microalgae-based technologies
			15.3.1.1 Characteristics of microalgae species used in wastewater treatment
			15.3.1.2 Mechanisms of nutrient recovery by microalgae
			15.3.1.3 Configuration of microalgae-based cultivation systems
				Suspended open systems
				Suspended closed photobioreactors
				Immobilized algae system
			15.3.1.4 Factors affecting nutrients recovery using microalgae
				Nutrients
				Light
				pH levels
		15.3.2 Photosynthetic bacteria-based technologies
			15.3.2.1 Classification and metabolic patterns of photobacteria
			15.3.2.2 Photosynthetic bacteria-based membrane bioreactor
			15.3.2.3 Nutrient recovery and biomass production in photosynthetic bacteria cultivation
			15.3.2.4 Impact factors and methods of enhancement
				Carbon source, nitrogen source, and carbon/nitrogen ratio
				Light
				Hydraulic retention time
				Sludge retention time
		15.3.3 Applications, potentials, and challenges
	15.4 Microbial electrochemical technologies for nutrients recovery
		15.4.1 Microbial electrolysis cells for nutrients recovery
		15.4.2 Microbial fuel cells for nutrients recovery
		15.4.3 Applications, potentials, and challenges
	15.5 Conclusions and perspectives
	References
16 - Stakeholder engagement: A strategy to support the transition toward circular economy business models
	16.1 Introduction
	16.2 From a linear to a circular model for greater sustainable development
	16.3 Stakeholder engagement and management of sustainable business models
	16.4 How do stakeholders and their engagement affect the transition toward circular business models?
	16.5 Conclusions and perspectives
	References
Index




نظرات کاربران