دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Arthur S. Nowick
سری:
ISBN (شابک) : 9780521419451, 052141945X
ناشر: Cambridge Univ. Press
سال نشر: 1995
تعداد صفحات: 244
زبان: English
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 1 مگابایت
در صورت تبدیل فایل کتاب Crystal Properties via Group Theory به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب خصوصیات کریستال از طریق نظریه گروه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Contents Preface 1. Tensor properties of crystals: equilibrium properties 1-1 Definition of crystal properties 1-2 Physical quantities as tensors; tensor properties 1-3 The basic linear relations 1-4 Condensation of indices: the 'engineering' stresses and strains 1-5 Effect of changing the conditions of measurement 1-6 Higher-order effects 1-6-1 Permittivity and optical properties 1-6-2 Third-order elastic constants 1-7 Optical activity: the gyration tensor 1-8 Summary of equilibrium properties 2. Tensor properties of crystals: transport properties 2-1 General theory 2-2 Thermoelectric effects 2-3 Piezoresistance 2-4 Galvanomagnetic and thermomagnetic effects 2-5 Summary of transport properties 2-6 Properties that cannot be represented by tensors 3. Review of group theory 3-1 Crystal symmetry and the point groups 3-2 Representation theory 3-3 The character tables 3-4 Concept of symmetry coordinates 3-5 Concept of similarity of orientation 4. Linear relations treated group theoretically 4-1 Introduction and Neumann's principle 4-2 Tensor quantities as hypervectors 4-3 The Symmetry-Coordinate Transformation (S-C-T) tables 4-4 The Fundamental Theorem 4-5 Applications of the Fundamental Theorem 4-6 Alternative treatments 5. The magnetic point groups and time reversal 5-1 The magnetic point groups 5-2 Neumann's principle in space-time 5-3 Application to non-magnetic crystals 5-4 Application to magnetic crystals 5-5 Conclusions 6. Matter tensors of rank 0, 1 and 2 6-1 Scalar quantities (rank 0) 6-2 Polar vector quantities (rank 1) 6-2-1 Form of the K tensor 6-2-2 Application to pyroelectric effect; ferroelectrics 6-3 Axial vector quantities 6-4 Second-rank tensor quantities 6-4-1 Forms of the K tensor for various crystal symmetries 6-4-2 Property Kin an arbitrary direction 6-4-3 Further remarks on T(2) matter tensors 6-4-4 Application to diffusivity and electrical conductivity 6-4-5 Application to the optical indicatrix 6-4-6 Application to the Hall tensor (see Section 2-4) 6-5 Second-rank axial tensors 6-5-1 Forms of the K tensor for various crystal symmetries 6-5-2 Application to optical activity (see Section 1-7): case of quartz 7. Matter tensors of rank 3 7-1 Partly symmetric tensors of rank 3 7-1-1 Form of the K tensor for various crystal symmetries 7-1-2 Application to piezoelectricity: quartz and PZT 7-1-3 Application to the linear electro-optic effect 7-2 Non-symmetric tensors of rank 3 7-3 Axial tensors of rank 3 7-4 Polar tensors of rank 3 revisited 8. Special magnetic properties 8-1 c-tensors of rank 1: the magnetocaloric effect 8-2 c-tensors of rank 2: the magnetoelectric effect 8-3 c-tensors of rank 3: the piezomagnetic effect 8-4 Symmetric c-tensors of rank 3: higher-order magnetic permeability 9. Matter tensors of ranks 4 and 5 9-1 Relation between T_s(2) and T_s(2) 9-2 Application to the elastic constants 9-3 Some applications of non-symmetric T( 4) tensors 9-4 Relation between T_s(2) and T(2): magnetothermoelectric power 9-5 Relation between T(1) and T_S(3): the second-order Hall effect 9-6 Other possibilities involving triple products 10. Matter tensors of rank 6 10-1 Relation between T_S(2) and T_S(4) 10-1-1 Case of the upper hexagonal groups 10-1-2 Case of the upper cubic and isotropic materials 10-2 Application to third-order elastic constants 10-3 Other cases of T(6) tensors Appendix A. Review of tensors A-1 Linear orthogonal transformations A-2 Defining tensors A-3 Algebra of tensors A-4 Symmetry of tensors A-5 Representation quadric of a symmetric T(2) A-6 Axial tensors Appendix B. Stress, strain and elasticity B-1 Stress B-2 Strain B-3 Elasticity Appendix C. Finite deformation Appendix D. The great orthogonality theorem Appendix E. The Symmetry-Coordinate Transformation tables for the 32 point groups and two infinite groups Appendix F. Proof of the Fundamental Theorem Appendix G. Theorems concerning magnetic groups References