ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Crust and Lithosphere Dynamics: Treatise on Geophysics

دانلود کتاب دینامیک پوسته و لیتوسفر: رساله ژئوفیزیک

Crust and Lithosphere Dynamics: Treatise on Geophysics

مشخصات کتاب

Crust and Lithosphere Dynamics: Treatise on Geophysics

دسته بندی: زمين شناسي
ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 0444534628, 9780444534620 
ناشر: Elsevier 
سال نشر: 2009 
تعداد صفحات: 610 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 33 مگابایت 

قیمت کتاب (تومان) : 30,000



کلمات کلیدی مربوط به کتاب دینامیک پوسته و لیتوسفر: رساله ژئوفیزیک: معدن و صنایع زمین شناسی، زمین شناسی، ژئوتکتونیکس و ژئودینامیک



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Crust and Lithosphere Dynamics: Treatise on Geophysics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب دینامیک پوسته و لیتوسفر: رساله ژئوفیزیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب دینامیک پوسته و لیتوسفر: رساله ژئوفیزیک

پوسته و دینامیک لیتوسفر نتایج مطالعاتی را که برای درک ما از پویایی پوسته و لیتوسفر اساسی است، گرد هم می آورد. با بحث در مورد سینماتیک و مکانیک صفحه آغاز می شود. سپس شواهد حاصل از جریان گرمای سطحی، اندازه گیری تنش، و ماگماتیسم را برای ساختار حرارتی و مکانیکی لیتوسفر در نظر می گیرد. در نهایت، به سبک‌های ساختاری گسل‌شدن، تغییر شکل پوسته و لیتوسفر در نواحی کششی (مانند شکافت) و فشاری (مانند ساختمان‌های کوهستانی)، و مفاهیم مکانیک صفحه برای تکامل حوضه رسوبی توجه می‌شود. حجم خودکفا شروع می‌شود. با مروری بر موضوع، سپس هر موضوع را با جزئیات عمیق بررسی می‌کند، فهرست‌های مرجع گسترده و ارجاعات متقابل با مجلدات دیگر برای تسهیل تحقیقات بیشتر، شکل‌ها و جداول تمام رنگی از متن پشتیبانی می‌کنند و به درک محتوای مناسب برای افراد متخصص و غیرمتخصص کمک می‌کنند.


توضیحاتی درمورد کتاب به خارجی

Crust and Lithosphere Dynamics brings together the results of studies that are fundamental to our understanding of crust and lithosphere dynamics. It begins with a discussion of plate kinematics and mechanics. Then it considers the evidence from surface heat flow, stress measurements, and magmatism for the thermal and mechanical structure of the lithosphere. Finally, consideration is given to the structural styles of faulting, the deformation of the crust and lithosphere in extensional (e.g. rifting) and compressional (e.g. mountain building) regions, and the implications of plate mechanics for sedimentary basin evolution.Self-contained volume starts with an overview of the subject then explores each topic with in depth detailExtensive reference lists and cross references with other volumes to facilitate further researchFull-color figures and tables support the text and aid in understandingContent suited for both the expert and non-expert



فهرست مطالب

Cover......Page 1
Editor-in-Chief......Page 2
Volume Editors......Page 3
Preface......Page 4
Introduction......Page 7
Isostasy and\r\'Steady-State’ Equilibrium......Page 9
The Earth’s Hypsometric Curve and Crustal Structure......Page 10
Gravity Anomalies, Crustal Structure,\rand Local Models of Isostasy......Page 12
Departures from Local Isostasy: Flexural Isostasy......Page 14
Earthquake Loading, Postseismic Relaxation, and the Short-Term (i.e.,\rup to a Few Hundreds of Seconds) Response......Page 18
Glacial and Lake Loading and Unloading, Rebound,\rand the Interm ediate-Term (a Few Tens of Thousand Years) Response......Page 22
Volcano and Sediment Loading and the Long-Term (Greater than Several Hundreds of Thousand Years) Response......Page 27
The Relationship between the Long-Term Elastic Thickness and Plate and Load Age......Page 32
Te Map......Page 35
Correlation of Te with Temperature Structure and Shear-Wave Velocity......Page 37
Toward an Integrated Model That Relates Elastic Thickness to Load Age on Short, Intermediate,\rand Long Timescales......Page 40
Terranes, the Wilson Cycle,\rand Inheritance......Page 41
Tectonic Setting of Geological Features......Page 44
Surface Processes and Flexural Interactions......Page 45
The Relative Contributions of Lithospheric Flexure to the Earth’s Topography and Gravity Anomaly Field and Mantle Convection......Page 47
Acknowledgments......Page 49
References......Page 50
Glossary......Page 55
Introduction......Page 56
Determination of Present-Day Plate Motions......Page 57
Techniques Used in Relative Plate Motion Studies......Page 60
Uncertainties in relative plate rotations......Page 61
Quantitative implementation of PURs......Page 63
Example: Central North and South Atlantic Reconstructions......Page 64
Diffuse Plate Boundaries......Page 67
The Morphology of the Ocean Floor......Page 69
Seamount Provinces......Page 72
The Ages of Seamounts and Oceanic Islands......Page 75
Plume Theory, Seamount Chains, and the Fixed Hot Spot Hypothesis......Page 76
Motion of the African Plate......Page 77
The hot-spotting technique......Page 78
The polygonal finite rotation method......Page 79
Moving hot spots......Page 81
OMS: A modified Hellinger criterion for absolute plate rotations......Page 82
Uncertainty in hot spot reconstructions using the OMS method......Page 84
WHK: A hot-spotting-PFRM hybrid method......Page 85
Driving Forces of Plate Tectonics......Page 88
Ridge Push......Page 89
Collisional Forces......Page 91
What Drives Plate Tectonics?......Page 93
Future Challenges......Page 96
References......Page 99
6.03 Plate Rheology and Mechanics......Page 105
Introduction......Page 106
Rock Properties as Derived From Rock Mechanics Data - Conventional Models......Page 108
Elastic Properties......Page 110
Brittle or Plastic Properties......Page 111
Diffusion and dislocation creep......Page 112
Lithospheric Structure and Goetze-Evans’ Yield Strength Envelopes......Page 114
Maxwell Model......Page 117
Uncertainties of Rock Mechanics Data......Page 118
Uncertainties of the Synthetic Yield Strength Envelopes......Page 119
Role of Frictional Heating, Pressure, Fluid Content, and Other Factors......Page 120
Possible Ways to Parameterize Rheology Data for Geological Timescale......Page 121
Rheology and Observations of Flexure (Te Data)......Page 123
Intraplate Seismicity (Ts), Te, and the BDT......Page 126
Large-Scale Lithospheric Folding......Page 128
Age and Other Dependences of the Integrated Strength of the Lithosphere......Page 129
Seismicity, Ts, BDT, and Long-Term Strength......Page 136
Stability Theory - Rayleigh-Taylor Instabilities, or Survival of Cratons and Mountain Roots......Page 140
Experiments on Normal Loading (Topography), or Survival of Cratons and Mountain Roots......Page 141
Experiments on Compressional Tectonic Loading (Subduction versus Collision)......Page 143
Stability Theory: Response to Large-Scale Compressional Instabilities (Folding)......Page 145
Seismicity and Long-Term Deformation......Page 147
Postseismic Relaxation Data and Long-Term Deformation......Page 149
Conclusions and Future Perspectives......Page 150
Acknowledgments......Page 152
References......Page 153
Introduction......Page 158
Introduction......Page 159
PGR Mathematical Modeling......Page 160
Global Vertical and Horizontal Displacements from PGR......Page 163
PGR in GPS Analyses......Page 166
Present-Day Glacier Shrinkage and Uplift of the Alps......Page 171
Sea-Level Changes......Page 173
Modeling Intraplate Deformation......Page 178
Monitoring Intraplate Deformation via GPS Analyses......Page 181
Introduction......Page 188
The Mediterranean: A Natural Laboratory for Understanding Plate Behavior at Subduction Zones......Page 189
The Fingerprint of Subduction in GPS Data......Page 191
Stress Pattern in the Mediterranean......Page 198
Blending Seismic, GPS,\rand Stress Data......Page 199
Introduction......Page 200
Modeling Global Coseismic and Postseismic Plate Deformation......Page 201
The Example of the Umbria-Marche (1997) Earthquake......Page 205
DInSAR-Retreived Coseismic Displacements......Page 209
The Irpinia (1980) Earthquake......Page 212
Conclusions......Page 216
References......Page 217
6.05 Heat Flow and Thermal Structure of the Lithosphere......Page 221
Introduction......Page 222
Distribution of Heat Flux: Large-Scale Overview......Page 223
Thermal Boundary Layer Structure......Page 224
Basal Boundary Conditions......Page 225
The Thermal Lithosphere as Opposed to the Seismically Defined Lithosphere......Page 226
Hydrothermal Circulation......Page 227
Cooling Half-Space Model......Page 228
Modified Thermal Model for the Oceanic Lithosphere......Page 230
Large-scale variations of mantle temperature......Page 232
Vertical Temperature Distribution......Page 233
Crustal Heat Production......Page 234
Mantle Heat Flux......Page 237
Regional Variations of Heat Flow and Lithospheric Temperatures......Page 238
Variations of Crustal Thickness......Page 240
Compressional Orogens......Page 242
Sedimentary basins......Page 243
Archean conditions......Page 244
Secular cooling in the lithosphere......Page 245
Seismicity, Elastic Thickness,\rand Thermal Regime of the Lithosphere......Page 246
Conclusions......Page 248
Bottom Hole Temperature (BHT) Data......Page 249
References......Page 250
Global Patterns of Tectonic Stress......Page 256
Sources of the Lithospheric Stress Field......Page 260
Absolute Stress Magnitudes and the Critically Stressed Crust......Page 262
Stress Field Constraints on Lithospheric Deformation......Page 266
Earthquake Focal Mechanisms......Page 272
In Situ stress Measurements......Page 273
References......Page 274
Relevant Websites......Page 276
6.07 Magmatism, Magma, and Magma Chambers......Page 277
Introduction......Page 278
The Nature of Magma......Page 279
Transport Characteristics......Page 280
Solidification Fronts......Page 281
Solidification Front Crystallization or Phenocryst-Free Magmas......Page 283
Phenocryst-Bearing Magma......Page 286
Kilauea Iki Lava Lake......Page 287
Primitive versus Primary Magmas......Page 290
The Problem: The Diversity of Igneous Rocks......Page 291
George Becker’s Magma Chamber......Page 292
Historical Setting......Page 294
Life Time Lines......Page 295
Initial Conditions of Magmatic Systems......Page 297
Style of Crystal Nucleation and Growth......Page 298
The Critical Connection between Space and Composition......Page 299
Internal transport style......Page 302
Filling times......Page 303
Thermal Ascent Characteristics and The Role of Thermal Convection......Page 304
Superheat......Page 305
Slower convective cooling in a conductive medium......Page 306
Summary of Magmatic Initial Conditions......Page 307
The Sudbury Igneous Complex (SIC)......Page 308
Ferrar Dolerites,\rAntarctica......Page 311
Lessons Learned from Sudbury and the Ferrar Dolerites......Page 315
Ocean Ridge Magmatism......Page 316
Introductory......Page 318
Spacing of the volcanic centers......Page 319
Character of the Volcanic Centers......Page 320
Subduction Regime......Page 322
Thermal regime......Page 323
The Source of Arc Magma......Page 324
Slab quartz-eclogite......Page 326
Diapirism, Rayleigh-Taylor Instability,\rand Volcano Spacing......Page 327
Solidification Front Instability......Page 328
Sidewall Upflow......Page 330
Fissure Flushing......Page 331
Magmatic Systems......Page 332
References......Page 333
Introduction......Page 336
Tectonic Force for Extension......Page 340
Magmatic intrusion......Page 342
Cohesion loss......Page 343
Viscous flow......Page 344
Local (crustal) isostasy......Page 345
High-Angle versus Low-Angle Normal Faults......Page 346
Rift Shoulder Uplift......Page 347
Low-Angle Fault Development and Stress Rotation......Page 349
Large Offset of Normal Faults......Page 350
2-D Models of Fault Formation and Offset......Page 351
Pure versus Simple Shear Rifting......Page 352
Slow Rifting and Thermal Diffusion......Page 360
Viscous Stresses......Page 361
Local Isostatic Crustal Thinning......Page 362
Dikes versus Stretching to Initiate Rifting......Page 363
Force Available for Driving Rifting......Page 366
Force Needed for Magmatic Rifting......Page 367
The Meaning of Rift Straightness......Page 371
Conclusions and Future Work......Page 372
References......Page 373
6.09 Dynamic Processes in Extensional and Compressional Settings - Mountain Building: From Earthquakes to Geological Deformation......Page 378
Introduction......Page 379
The Himalaya as a Result of the India-Asia Collision......Page 380
Variation of Crustal Thickness across the Himalaya......Page 381
Geological Architecture of the Himalayan Range and Southern Tibet......Page 383
Metamorphism......Page 387
Geophysical Constraints on the Structure of the Crust......Page 388
Active Thrusting and Folding in the Sub-Himalaya......Page 389
Structural evolution of the sub-Himalaya......Page 390
River incision across the sub-Himalaya......Page 391
Converting incision rates to uplift rates in the sub-Himalaya......Page 392
Converting uplift rates to horizontal shortening from area balance......Page 393
Converting uplift rates to horizontal shortening from the fault-bend fold model......Page 395
Fluvial incision across the whole range......Page 396
Longer-Term Geological Deformation and Exhumation......Page 397
Foreland Deposition: A Record of Underthrusting......Page 398
Structural Evolution of the Thrust Package......Page 400
Exhumation of the Lesser and High Himalaya: A Record of Overthrusting......Page 401
Overthrusting, Underthrusting,\rand Accretion......Page 403
Thermokinematic Model of the Evolution of the Range since 15Ma......Page 404
Model implementation......Page 406
Modeling results......Page 409
Geodetic Deformation and the Seismic Cycle......Page 410
Large Earthquakes in the Himalaya......Page 411
Geodetic Deformation in the Nepal Himalaya......Page 412
Microseismic Activity in the Nepal Himalaya......Page 415
A Model of the Seismic Cycle in the Central Nepal Himalaya......Page 418
Geodetic Deformation, Seismic Coupling,\rand Recurrence of Large Earthquakes in the Himalaya......Page 419
Is Interseismic Strain Stationary?......Page 421
The Critical Wedge Theory: Does It Apply to the Himalaya?......Page 422
Evidence for Low Friction on the MHT......Page 425
Importance of the Brittle-Ductile Transition......Page 426
How Does the Steep Front of the High Himalaya Relate to Tectonics, Erosion,\rand Climate?......Page 427
The Elevation and Support of Mountain Ranges: Effect of Climate and Lower Crustal Flow......Page 429
Effect of ductile deformation in the lower crust......Page 430
The Fate of the Indian Crust and Mantle Lithosphere......Page 431
Conclusions......Page 432
References......Page 433
6.10 Fault Mechanics......Page 441
Anderson’s Theory of Faulting......Page 442
Overthrust Faults and the Hubert-Rubey Theory......Page 443
Linear Elastic Fracture Mechanics......Page 445
Critical Fault Tip Taper (CFTT) Model......Page 446
Displacement-Length Scaling......Page 447
Process Zones and Their Scaling......Page 450
Cataclasite Zone Scaling......Page 453
Interpretation of the Scaling Laws in Terms of Crack Models......Page 455
Pinning......Page 456
Coalescence......Page 458
Nucleation inhibition......Page 459
Interactions at strike-slip jogs......Page 460
Fault Populations......Page 463
Power law distributions......Page 465
The Formation of Fault Populations......Page 467
Calculation of Brittle Strain from Fault Data......Page 469
Fault Rotation and Lockup......Page 471
Shallow Schizosphere......Page 472
Deep Schizosphere......Page 473
Brittle-Plastic Transition Region......Page 474
Shear localization and strain softening in mylonite zones......Page 475
Synoptic Model for Faults and Shear Zones......Page 476
Direct Evidence for Fault Strength......Page 477
The Weak San Andreas Fault Fallacy......Page 478
References......Page 479
6.11 Tectonic Models for the Evolution of Sedimentary Basins......Page 484
Introduction......Page 485
Extensional Basin Systems......Page 489
Back-arc rifts......Page 490
Thermal thinning and stretching of the lithosphere: concepts and models......Page 492
Syn-rift subsidence and duration of rifting stage......Page 495
Shape and magnitude of rift-induced thermal anomalies......Page 497
Stretching factors derived from quantitative subsidence analyses......Page 498
Postrift compressional reactivation potential......Page 500
Finite strength of the lithosphere in extensional basin formation......Page 503
Rift-shoulder development and architecture of basin fill......Page 504
Transformation of an orogen into a cratonic platform: the area of the European Cenozoic Rift System......Page 507
Variscan Orogen......Page 510
Permo-Carboniferous magmatism and lithospheric destabilization......Page 511
Permo-Carboniferous evolution of the ECRIS Zone......Page 512
Late Permian and Mesozoic thermal subsidence and rifting......Page 514
Tectonic subsidence modeling......Page 515
Development of foreland basins......Page 518
Compressional basins: lateral variations in flexural behaviour and implications for palaeotopography......Page 519
Lithospheric folding: an important mode of intraplate basin formation......Page 522
Lithosphere Strength and Deformation Mode......Page 524
Mechanical Controls on Basin Evolution: Europe’s Continental Lithosphere......Page 528
Extensional Basin Migration: Observations and Thermomechanical Models......Page 534
Fast Rifting and Continental Breakup......Page 539
Thermomechanical Evolution and Tectonic Subsidence During Slow Extension......Page 541
Postrift Inversion,\rBorderland Uplift, and Denudation......Page 543
Black Sea Basin: Compressional Reactivation of an Extensional Basin......Page 545
Rheology and Sedimentary Basin Formation......Page 547
Role of Intraplate Stresses......Page 549
Strength Evolution and Neotectonic Reactivation at the Basin Margins during the Postrift Phase......Page 551
Modes of Basin (De)formation, Lithospheric Strength,\rand Vertical Motions in the Pannonian-Carpathian Basin System......Page 554
Lithospheric Strength in the Pannonian-Carpathian System......Page 558
Dynamic models of basin formation......Page 560
Stretching models and subsidence analysis......Page 562
Neogene Evolution of the Carpathians System......Page 565
Preorogenic extensional basin......Page 566
Flexural modeling of the foredeep basin......Page 571
Deformation of the Pannonian-Carpathian System......Page 574
The Iberia Microcontinent: Compressional Basins within the Africa-Europe Collision Zone......Page 578
Constraints on Vertical Motions......Page 580
Present-Day Stress Regime and Topography......Page 584
Lithospheric Folding and Drainage Pattern......Page 585
Interplay between Tectonics, Climate,\rand Fluvial Transport during the Cenozoic Evolution of the Ebro Basin (NE Iberia)......Page 587
Ebro Basin evolution: a modeling approach......Page 589
Opening and incision of the Ebro Basin: interplay of lithospheric and surface processes......Page 591
Conclusions and Future Perspectives......Page 592
Acknowledgments......Page 594
References......Page 595




نظرات کاربران