ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب CRISPR and RNAi Systems: Nanobiotechnology Approaches to Plant Breeding and Protection

دانلود کتاب سیستم‌های CRISPR و RNAi: رویکردهای نانوبیوتکنولوژی برای اصلاح و حفاظت گیاهان

CRISPR and RNAi Systems: Nanobiotechnology Approaches to Plant Breeding and Protection

مشخصات کتاب

CRISPR and RNAi Systems: Nanobiotechnology Approaches to Plant Breeding and Protection

ویرایش:  
نویسندگان: ,   
سری: Nanobiotechnology for Plant Protection 
ISBN (شابک) : 0128219106, 9780128219102 
ناشر: Elsevier 
سال نشر: 2021 
تعداد صفحات: 840
[821] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 28 Mb 

قیمت کتاب (تومان) : 60,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب CRISPR and RNAi Systems: Nanobiotechnology Approaches to Plant Breeding and Protection به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سیستم‌های CRISPR و RNAi: رویکردهای نانوبیوتکنولوژی برای اصلاح و حفاظت گیاهان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب سیستم‌های CRISPR و RNAi: رویکردهای نانوبیوتکنولوژی برای اصلاح و حفاظت گیاهان



گیاهان در برابر پاتوژن‌ها از جمله قارچ‌ها، باکتری‌ها و ویروس‌ها آسیب‌پذیر هستند که باعث مشکلات و کمبودهای حیاتی می‌شوند. حفاظت از محصولات با اصلاح نباتات راه حل امیدوار کننده ای را ارائه می دهد که هیچ تأثیر آشکاری بر سلامت انسان یا اکوسیستم محلی ندارد. اصلاح محصولات زراعی قدرتمندترین رویکرد برای تولید ارقام منحصر به فرد محصول از زمان بومی سازی بوده است که نوآوری های اصلی را در تغذیه جهان و توسعه جامعه ممکن می سازد. ویرایش ژنوم یکی از دستگاه‌های ژنتیکی است که می‌توان پیاده‌سازی کرد و مقاومت در برابر بیماری اغلب به عنوان تشویق‌کننده‌ترین کاربرد فناوری CRISPR/Cas9 در کشاورزی ذکر می‌شود. نانوبیوتکنولوژی از قدرت ویرایش ژنوم برای توسعه محصولات کشاورزی استفاده کرده است. رویکردهای نانوتکنولوژی DNA یا RNA در اندازه نانو می‌توانند به افزایش پایداری و عملکرد RNA‌های راهنمای CRISPR کمک کنند. این کتاب آخرین تحقیقات در این زمینه‌ها را گرد هم می‌آورد.

سیستم‌های CRISPR و RNAi: رویکردهای نانوبیوتکنولوژی برای اصلاح و حفاظت گیاهان درکی کامل از تکنیک‌های RNAi و CRISPR/Cas9 برای کنترل مایکوتوکسین‌ها، مبارزه با نماتدهای گیاهی و شناسایی پاتوژن‌های گیاهی. ویرایش ژنوم CRISPR/Cas اصلاح هدفمند کارآمد را در اکثر محصولات ممکن می‌سازد، بنابراین نویدبخش تسریع بهبود محصول است. CRISPR/Cas9 را می توان برای مدیریت حشرات گیاهی و پاتوژن های مختلف گیاهی استفاده کرد. این کتاب یک منبع مرجع مهم هم برای دانشمندان علوم گیاهی و هم برای دانشمندان محیط‌زیست است که می‌خواهند بفهمند چگونه از روش‌های مبتنی بر بیوتکنولوژی نانو برای ایجاد سیستم‌های حفاظت از گیاه و اصلاح نباتات کارآمدتر استفاده می‌شود.


توضیحاتی درمورد کتاب به خارجی

Plants are vulnerable to pathogens including fungi, bacteria, and viruses, which cause critical problems and deficits. Crop protection by plant breeding delivers a promising solution with no obvious effect on human health or the local ecosystem. Crop improvement has been the most powerful approach for producing unique crop cultivars since domestication occurred, making possible the main innovations in feeding the globe and community development. Genome editing is one of the genetic devices that can be implemented, and disease resistance is frequently cited as the most encouraging application of CRISPR/Cas9 technology in agriculture. Nanobiotechnology has harnessed the power of genome editing to develop agricultural crops. Nanosized DNA or RNA nanotechnology approaches could contribute to raising the stability and performance of CRISPR guide RNAs. This book brings together the latest research in these areas.

CRISPR and RNAi Systems: Nanobiotechnology Approaches to Plant Breeding and Protection presents a complete understanding of the RNAi and CRISPR/Cas9 techniques for controlling mycotoxins, fighting plant nematodes, and detecting plant pathogens. CRISPR/Cas genome editing enables efficient targeted modification in most crops, thus promising to accelerate crop improvement. CRISPR/Cas9 can be used for management of plant insects, and various plant pathogens. The book is an important reference source for both plant scientists and environmental scientists who want to understand how nano biotechnologically based approaches are being used to create more efficient plant protection and plant breeding systems.



فهرست مطالب

Title-page_2021_CRISPR-and-RNAi-Systems
	CRISPR and RNAi Systems
Copyright_2021_CRISPR-and-RNAi-Systems
	Copyright
Contents_2021_CRISPR-and-RNAi-Systems
	Contents
List-of-contributors_2021_CRISPR-and-RNAi-Systems
	List of contributors
Series-preface_2021_CRISPR-and-RNAi-Systems
	Series preface
Preface_2021_CRISPR-and-RNAi-Systems
	Preface
Chapter-1---Can-CRISPRized-crops-save-the-global-fo_2021_CRISPR-and-RNAi-Sys
	1 Can CRISPRized crops save the global food supply?
		1.1 Introduction
		1.2 Gene editing techniques
		1.3 RNAi and CRISPR systems for plant breeding and protection: where are we now?
			1.3.1 Improving yield and quality in crops
			1.3.2 Biotic and abiotic stress resistance
			1.3.3 Speed breeding programs in plants
		1.4 What are future perspectives?
		1.5 Conclusion
		References
Chapter-2---Targeted-genome-engineering-for-insects_2021_CRISPR-and-RNAi-Sys
	2 Targeted genome engineering for insects control
		2.1 Introduction
			2.1.1 RNAi in insects
			2.1.2 Prerequisites for RNAi response
			2.1.3 Variation in RNAi response
			2.1.4 ORDER specific RNAi applications
			2.1.5 Pros and cons of RNAi-mediated insect control strategies
		2.2 CRISPR/Cas9
			2.2.1 CRISPR–Cas9 sex-ratio distortion and sterile insect technique
			2.2.2 Potential targets for CRISPR system in insects
		2.3 Conclusion and future prospects
		References
Chapter-3---CRISPR-Cas9-regulations-in-plant-scie_2021_CRISPR-and-RNAi-Syste
	3 CRISPR/Cas9 regulations in plant science
		3.1 Introduction
		3.2 Ethical concerns for CRISPR-based editing system
		3.3 Biosafety concerns for genomic manipulated crops
		3.4 Global regulations of CRISPR edit crops
			3.4.1 The United States regulation policies for genome edit crops
			3.4.2 Canada regulation policies for genome edit crops
			3.4.3 European Union regulation policies for genome edit crops
			3.4.4 China regulation policies for genome edit crops
			3.4.5 Pakistan regulation policies for genome edit crops
			3.4.6 India regulation policies for genome edit crops
			3.4.7 Australia regulation policies for genome edit crops
			3.4.8 Japan regulation policies for genome edit crops
			3.4.9 New Zealand regulation policies for genome edit crops
			3.4.10 Brazil regulation policies for genome edit crops
		3.5 Conclusion and future outlook
		3.6 Conflict of interest
		References
Chapter-4---Are-CRISPR-Cas9-and-RNA-interference-based-ne_2021_CRISPR-and-RN
	4 Are CRISPR/Cas9 and RNA interference-based new technologies to relocate crop pesticides?
		4.1 Introduction
		4.2 Conventional pesticides: present status and challenges
		4.3 Advancement in green revolution: the RNAi toolkit
		4.4 Advantages and disadvantages of RNAi-based methods
		4.5 Advantages of CRISPR/Cas9-based systems
		4.6 Conclusions and future prospects
		Acknowledgments
		References
		Further reading
Chapter-5---CRISPR-Cas-epigenome-editing--improving-cro_2021_CRISPR-and-RNAi
	5 CRISPR-Cas epigenome editing: improving crop resistance to pathogens
		5.1 Introduction
			5.1.1 A brief history of CRISPR/Cas
			5.1.2 CRISPR/Cas9-based genome editing
		5.2 Applications of CRISPR/Cas9
			5.2.1 Re-engineering Cas9 for genome editing
				5.2.1.1 Double nicking CRISPR/Cas9
				5.2.1.2 CRISPRi (CRISPR interference)
				5.2.1.3 CRISPRa (CRISPR activation)
				5.2.1.4 CRISPR I/O (input/output) gene regulation
				5.2.1.5 CRISPR epigenome editing
				5.2.1.6 CRISPR base editing
				5.2.1.7 CRISPR prime editing
		5.3 CRISPR/Cas12
		5.4 CRISPR/Cas13 RNA editing
		5.5 CRISPR/Cas14
		5.6 Delivery of CRISPR/Cas system for (epi)genome editing
			5.6.1 Virus-induced gene editing and viral delivery for CRISPR/Cas systems
			5.6.2 Agrobacterium-mediated T-DNA transformation
			5.6.3 PEG transformation
			5.6.4 Direct delivery of ribonucleotide protein complexes
		5.7 Cisgenic, intragenic, transgenic or edited plants
		5.8 Epigenome editing
			5.8.1 Targeted epigenetic regulation
			5.8.2 Crop disease resistance
			5.8.3 Limitations to epigenome editing
		5.9 Summary and future directions
		Acknowledgments
		References
Chapter-6---CRISPR-Cas-system-for-the-development-of-dise_2021_CRISPR-and-RN
	6 CRISPR/Cas system for the development of disease resistance in horticulture crops
		6.1 Introduction
		6.2 Bacterial resistance
			6.2.1 Citrus canker
			6.2.2 Fire blight
		6.3 Fungal resistance
			6.3.1 Powdery mildew
			6.3.2 Gray mold
			6.3.3 Black pod
		6.4 Virus resistance
			6.4.1 RNA viruses
			6.4.2 DNA viruses
		6.5 Concluding remarks
		References
Chapter-7---CRISPR-and-RNAi-technology-for-crop-improvem_2021_CRISPR-and-RNA
	7 CRISPR and RNAi technology for crop improvements in the developing countries
		7.1 Introduction
		7.2 Conventional breeding for crop improvements
		7.3 RNAi technology: an overview
			7.3.1 RNAi technology for crop improvements
				7.3.1.1 Enhancement in biotic stress tolerance/resistance
				7.3.1.2 Enhancement in abiotic stress tolerance/resistance
				7.3.1.3 Engineering of seedless fruits
				7.3.1.4 Enhancement of nutritional value
				7.3.1.5 Induction of male sterility/heterosis
		7.4 CRISPR technology for crop improvements: an overview
			7.4.1 CRISPR technology for the development of biotic stress resistance
			7.4.2 CRISPR technology for the development of abiotic stress resistance
			7.4.3 CRISPR technology for nutritional modifications in crop
		7.5 Crop improvements: examples from developing countries
			7.5.1 China
			7.5.2 India
			7.5.3 Pakistan
			7.5.4 Bangladesh
			7.5.5 Africa
		7.6 Conclusion and prospects
		References
Chapter-8---RNA-interference-and-CRISPR-Cas9-applicatio_2021_CRISPR-and-RNAi
	8 RNA interference and CRISPR/Cas9 applications for virus resistance
		8.1 Introduction
		8.2 Control of viral diseases using RNA interference approaches
		8.3 Control of viral diseases using CRISPR/Cas technology
		8.4 CRISPR/Cas genome editing against DNA viruses
		8.5 CRISPR/Cas genome editing against RNA viruses
		8.6 Production of foreign DNA-free virus-resistant plants by CRISPR/Cas
		8.7 RNA interference versus CRISPR/Cas strategies
		8.8 Conclusion
		References
Chapter-9---Current-trends-and-recent-progress-of-genetic-e_2021_CRISPR-and-
	9 Current trends and recent progress of genetic engineering in genus Phytophthora using CRISPR systems
		9.1 Introduction
		9.2 Common diseases of crops caused by Phytophthora
		9.3 Genome editing approaches
		9.4 CRISPR-Cas systems for Phytophthora
		9.5 Applications of CRISPR-Cas in genetic engineering of Phytophthora
		9.6 Challenges of CRISPR-Cas in Phytophthora
		9.7 CRISPR-Cas based databases and bioinformatics tools for Phytophthora
		9.8 Conclusion and future prospects
		Acknowledgment
		References
Chapter-10---CRISPR-Cas9-and-Cas13a-systems--a-promising-_2021_CRISPR-and-RN
	10 CRISPR/Cas9 and Cas13a systems: a promising tool for plant breeding and plant defence
		10.1 Introduction
		10.2 CRISPR/Cas technology and engineering plant resistance to viruses
		10.3 Targeting plant DNA viruses using CRISPR/Cas9
		10.4 Targeting RNA viruses using CRISPR/Cas13 and FnCas9
			10.4.1 Direct interference of viral RNA genomes
			10.4.2 Interference of plant host factors aiding viral infection
			10.4.3 Advantages of genome editing technologies for breeding virus resistance
			10.4.4 Caveats of employing the CRISPR/Cas technology to engineer resistance to plant viruses
				10.4.4.1 Overcoming the caveats of the CRISPR/Cas systems
			10.4.5 Future directions of genome editing to protect crops from viruses
		10.5 CRISPR technology for plant improvement
			10.5.1 Rice
			10.5.2 Wheat
			10.5.3 Cotton
			10.5.4 Maize
			10.5.5 Soya bean
			10.5.6 Tomato
			10.5.7 Potato
			10.5.8 Citrus
			10.5.9 Apples
		10.6 Conclusion
		References
Chapter-11---CRISPR-Cas-techniques--a-new-method-for-RN_2021_CRISPR-and-RNAi
	11 CRISPR/Cas techniques: a new method for RNA interference in cereals
		11.1 Introduction
		11.2 Overview of CRISPR/Cas system
		11.3 CRISPR system for genome editing in cereals
			11.3.1 CRISPR/Cas system for rice improvement
			11.3.2 CRISPR/Cas system for wheat improvement
			11.3.3 CRISPR/Cas system for maize improvement
			11.3.4 CRISPR/Cas system for sorghum improvement
		11.4 CRISPR/Cas system a better choice for genome editing
		11.5 Recent developments in CRISPR technology
		11.6 Conclusion and future prospectus
		References
Chapter-12---Genetic-transformation-methods-and-advanceme_2021_CRISPR-and-RN
	12 Genetic transformation methods and advancement of CRISPR/Cas9 technology in wheat
		12.1 Introduction
		12.2 Objective
		12.3 Background
			12.3.1 Structure and mechanism of Cas9
			12.3.2 Types of CRISPR/Cas and opportunity headed for genome editing
		12.4 Steps involved in CRISPR/Cas9 mediated genome editing
		12.5 Different technologies evolved from CRISPR
			12.5.1 Gene and epigenome editing in wheat
			12.5.2 Transcriptional activation and suppression using dCas9
			12.5.3 Site-directed foreign DNA insertion in the wheat genome
			12.5.4 Multiplexed engineering in wheat
				12.5.4.1 Multiple gRNAs with their respective promoters
				12.5.4.2 Multiple gRNAs using tRNA processing enzymes
				12.5.4.3 Multiple gRNAs using Csy4
			12.5.5 Viral replicon based editing in wheat
		12.6 The delivery methods of CRISPR/Cas9 construct in wheat
			12.6.1 Biolistic mediated delivery of CRISPR/Cas9 in the wheat
			12.6.2 Agrobacterium-mediated transformation in wheat
			12.6.3 Floral dip/microspore-based gene editing in wheat
			12.6.4 PEG-mediated delivery of CRISPR/Cas9 reagents or vector
		12.7 Genome engineering for wheat improvement
			12.7.1 Improvement for grain quality and stress-tolerant wheat
			12.7.2 CRISPR/Cas9 mediated fungal resistant wheat
		12.8 Conclusion and outlook
		Acknowledgments
		References
Chapter-13---Application-of-CRISPR-Cas-system-for-geno_2021_CRISPR-and-RNAi-
	13 Application of CRISPR/Cas system for genome editing in cotton
		13.1 Introduction
		13.2 Genome editing technologies
		13.3 CRISPR/Cas genome editing system
		13.4 Application of CRISPR/Cas9 for genome editing in cotton
			13.4.1 Utilization of CRISPR for biotic stresses
			13.4.2 Utilization of CRISPR for abiotic stresses
			13.4.3 Utilization of CRISPR for fiber quality
			13.4.4 Utilization of CRISPR for plant architecture and flowering
			13.4.5 Utilization of CRISPR for virus-induced disease resistance
			13.4.6 Utilization of CRISPR for epigenetic modifications
			13.4.7 Utilization of CRISPR for multiplexed gene stacking
			13.4.8 Challenges in the utilization of CRISPR for polyploidy cotton
		13.5 Conclusion
		Acknowledgement
		References
Chapter-14---Resistant-starch--biosynthesis--regulatory-p_2021_CRISPR-and-RN
	14 Resistant starch: biosynthesis, regulatory pathways, and engineering via CRISPR system
		14.1 Introduction
		14.2 Wheat starch: overview
			14.2.1 Starch biosynthesis in crops
			14.2.2 Role of bZIP in seed development and maturation
		14.3 Role of CRISPR/Cas9 in developing resistant starch
		14.4 Recent advancement in CRISPR/Cas for the crop improvement
		14.5 Genome modification for nutrition improvement
		14.6 Conclusion
		References
Chapter-15---Role-of-CRISPR-Cas-system-in-altering-phenolic_2021_CRISPR-and-
	15 Role of CRISPR/Cas system in altering phenolic and carotenoid biosynthesis in plants defense activation
		15.1 Introduction
		15.2 Phenolics in plant defense
		15.3 Biosynthesis and regulation
		15.4 Carotenoids
		15.5 Genome editing
		15.6 CRISPR/Cas9 and applications in alteration in the biosynthesis of phenolics and carotenoids
		15.7 Future of genome editing in field crops
		15.8 Conclusion
		References
Chapter-16---Fungal-genome-editing-using-CRISPR-Cas-nuclea_2021_CRISPR-and-R
	16 Fungal genome editing using CRISPR-Cas nucleases: a new tool for the management of plant diseases
		16.1 Introduction
		16.2 Common diseases of crops caused by phytopathogenic fungi
		16.3 Approaches for genetic engineering of filamentous fungi
			16.3.1 Transcription activator-like effector nucleases
			16.3.2 Zinc finger nucleases
			16.3.3 CRISPR-Cas nucleases
			16.3.4 Variants of CRISPR-Cas system
				16.3.4.1 Cpf1/Cas12a
				16.3.4.2 Cas13a
				16.3.4.3 Cas9 nickase
				16.3.4.4 dCas9
		16.4 Editing in plant genes using CRISPR-Cas against phytopathogenic fungi
		16.5 Applications of CRISPR-Cas in genetic engineering of phytopathogenic fungi
		16.6 Conclusion and perspective
		Acknowledgment
		References
Chapter-17---CRISPR-Cas-systems-as-antimicrobial-agents_2021_CRISPR-and-RNAi
	17 CRISPR–Cas systems as antimicrobial agents for agri-food pathogens
		17.1 Introduction
		17.2 Role of CRISPR/Cas system in bacterial immunity
			17.2.1 Structure of clustered regularly interspaced short palindromic repeat in bacteria
			17.2.2 Arrangement of CRISPR/Cas type system
			17.2.3 Functioning mechanism of CRISPR and Cas proteins and their proposed role
		17.3 The CRISPR/Cas-9 system and its utilization in genome editing
		17.4 CRISPR–Cas systems application in food, agri-food, and plant
			17.4.1 The benefit of CRISPR/Cas systems in starter culture preparation
			17.4.2 Development of CRISPR/Cas-9 against virus resistance in agriculturally crops
			17.4.3 Development of CRISPR/Cas-9 against fungal resistance in agriculturally crops
			17.4.4 Development of CRISPR/Cas-9 against bacterial resistance in agriculturally crops
			17.4.5 Development of CRISPR/Cas-9 against bacterial resistance in food
		17.5 The advantages and limits of CRISPR–Cas systems in agri-food
		17.6 Conclusion and future perspective
		References
Chapter-18---CRISPR-interference-system--a-potential-strate_2021_CRISPR-and-
	18 CRISPR interference system: a potential strategy to inhibit pathogenic biofilm in the agri-food sector
		18.1 Introduction
		18.2 Pathogenic biofilms of agriculture
			18.2.1 Plant biofilm diseases
			18.2.2 Phytopathogenic bacteria
			18.2.3 Phytopathogenic oomycetes
			18.2.4 Phytopathogenic fungi
		18.3 Food industry biofilms
			18.3.1 Food industry biofilm-forming pathogens
		18.4 Agri-food biofilm specific genes
		18.5 CRISPR applications
		18.6 CRISPR mechanism of action
			18.6.1 CRISPR–Cas and agri-food pathogenic biofilms
			18.6.2 Initial adherence and colonization prevention
			18.6.3 Quorum sensing inhibition
			18.6.4 Phage-based antibiofilm agent development
		18.7 Conclusion
		References
Chapter-19---Patenting-dynamics-in-CRISPR-gene-editin_2021_CRISPR-and-RNAi-S
	19 Patenting dynamics in CRISPR gene editing technologies
		19.1 Backdrop
		19.2 The patenting landscape
			19.2.1 The US patents scenario vis-à-vis Broad Institute and University of California Berkeley with regard to the foundatio...
			19.2.2 The CRISPR research and patent landscape—a follow-on of the foundational patents
				19.2.2.1 General observations
				19.2.2.2 CRISPR landscape updated to February 2020
		19.3 CRISPR patent interference proceedings, opposition proceedings, and patent litigations
			19.3.1 Patent interference proceedings at the USPTO
			19.3.2 Interference proceedings in the USA of Broad’s patent no. US8697359B1
			19.3.3 Interference proceedings in the USA of University of California Berkeley’s patent US 10,000,772 B2 initiated by Sigma
			19.3.4 The EPO patent dispute scenario involving Broad Institute and University of California with regard to the foundation...
				19.3.4.1 Opposition proceedings against Broad Institute, MIT and Harvard patent no. EP 2771468 B1 (EPO, 2020)
				19.3.4.2 Opposition proceedings against University of California Berkeley together with the University of Vienna and Emmanu...
		19.4 Licensing and patent transactions related to CRISPR technologies
		19.5 Ethical challenges and regulatory issues
		19.6 Conclusion
		Acknowledgement
		References
Chapter-20---Tricks-and-trends-in-CRISPR-Cas9-based-genome-e_2021_CRISPR-and
	20 Tricks and trends in CRISPR/Cas9-based genome editing and use of bioinformatics tools for improving on-target efficiency
		20.1 Bacterial CRISPR/Cas-mediated adaptive immune system
		20.2 Important considerations before starting CRISPR/Cas experiments
		20.3 General criteria for selecting a candidate target sequence
		20.4 Current rules and considerations for an efficient gRNA design
		20.5 Machine learning approach for defining on-target cleavage
		20.6 Off-target activity prediction
		20.7 Online databases and bioinformatics tools for designing an optimal gRNA
		20.8 Modes of CRISPR/Cas9 delivery
			20.8.1 Plasmid-mediated transgene delivery method
			20.8.2 Transgene-free ribonucleoproteins delivery method
		20.9 Conclusion and future prospects
		References
Chapter-21---RNA-interference-and-CRISPR-Cas9-technique_2021_CRISPR-and-RNAi
	21 RNA interference and CRISPR/Cas9 techniques for controlling mycotoxins
		21.1 Introduction
		21.2 Genomics of mycotoxin production
		21.3 Environmental impact on genomic imprints for mycotoxin production and plant defenses
		21.4 RNA interference
			21.4.1 Functional mechanism
			21.4.2 Applications in plant mycotoxin protection
			21.4.3 Applications of RNAi for reduced mycotoxin production in fungi
			21.4.4 Applications of RNAi for host-induced gene silencing
		21.5 Clustered regularly interspaced short palindromic repeats
			21.5.1 Functional mechanism
			21.5.2 Applications in plant mycotoxin protection
				21.5.2.1 Applications of CRISPR technology within mycotoxigenic fungi
			21.5.3 Applications of CRISPR technology within plants for protection from mycotoxins
		21.6 Genetic interconnection of mycotoxin disease pathogenesis
		21.7 Green mycotoxin protection
		21.8 Conclusion and future prospects
		Acknowledgments
		References
Chapter-22---Role-of-small-RNA-and-RNAi-technology-toward-_2021_CRISPR-and-R
	22 Role of small RNA and RNAi technology toward improvement of abiotic stress tolerance in plants
		22.1 Introduction
		22.2 Small RNA biogenesis and RNA interference activity in plants
		22.3 The role of small RNA and RNA interference in plant abiotic stress responses
			22.3.1 Drought stress
			22.3.2 Temperature stress
			22.3.3 Salinity stress
		22.4 Additional RNA-targeting tools: clustered regularly interspaced short palindromic repeat–based technologies
		22.5 Conclusion and future perspectives
		Acknowledgments
		References
Chapter-23---RNAi-based-system-a-new-tool-for-insect_2021_CRISPR-and-RNAi-Sy
	23 RNAi-based system a new tool for insects’ control
		23.1 Introduction
		23.2 The effectiveness of RNAi in biological control and its working mechanism in the attenuation of genes which is essenti...
		23.3 Application of RNAi gene technology in the preservation of crops against harmful insects
		23.4 Delivery methods of dsRNA into insect cells
			23.4.1 Bacterial and fungal cells as carriers of dsRNA
			23.4.2 Viral vector as a delivery vehicle
			23.4.3 Nanoparticle as a delivery vehicle
			23.4.4 Liposomes and protein as a delivery system
			23.4.5 Genetically modified plants as a delivery system
			23.4.6 Spraying as a delivery system
		23.5 Parameters taken into consideration when applying dsRNA
			23.5.1 Influence of sensitivity and resistance of the target species
			23.5.2 Influence of enzymatic activity on the efficiency of knockdown
			23.5.3 Influence of target genes on the efficiency of knockdown
		23.6 Risks of dsRNA to human health and environment
		23.7 Conclusion
		References
Chapter-24---RNAi-strategy-for-management-of-phytopa_2021_CRISPR-and-RNAi-Sy
	24 RNAi strategy for management of phytopathogenic fungi
		24.1 Introduction
		24.2 RNAi in plants and fungi
		24.3 Trans-kingdom siRNA communication
		24.4 RNAi against phytopathogenic fungi
		24.5 Host-induced gene silencing strategy against phytopathogenic fungi
		24.6 Spray-induced gene silencing strategy against phytopathogenic fungi
		24.7 Concluding Remarks
		References
Chapter-25---CRISPR-applications-in-plant-bacteriology--_2021_CRISPR-and-RNA
	25 CRISPR applications in plant bacteriology: today and future perspectives
		25.1 Introduction
		25.2 CRISPR applications in plant bacteriology
			25.2.1 Genetic diversity
			25.2.2 Strain typing
			25.2.3 Virulence and pathogenicity
			25.2.4 Diagnostics
		25.3 CRISPR applications in plant bacteriology management
			25.3.1 Breeding for resistance against phytopathogenic bacteria
			25.3.2 CRISPR-based antimicrobials against food-borne bacteria
			25.3.3 Beneficial bacteria
		25.4 Challenges and technical considerations
		25.5 Future perspectives and conclusion
		References
Chapter-26---RNAi-based-gene-silencing-in-plant-parasitic_2021_CRISPR-and-RN
	26 RNAi-based gene silencing in plant-parasitic nematodes: a road toward crop improvements
		26.1 Introduction
		26.2 Plant–nematode interaction and disease development
		26.3 Host-induced dsRNAs for targeting nematode genes
			26.3.1 HIGS in nematodes
			26.3.2 Plant miRNAs in response to nematode
			26.3.3 Plant small noncoding RNAs in response to nematode
		26.4 Biosafety and limitations
		26.5 Conclusion and perspectives
		Acknowledgments
		References
Chapter-27---RNA-interference-mediated-viral-disease-re_2021_CRISPR-and-RNAi
	27 RNA interference-mediated viral disease resistance in crop plants
		27.1 Introduction
		27.2 Major crop diseases
		27.3 RNA interference in viral resistance
		27.4 Applications of RNA interference in viral-resistant crop development
			27.4.1 Rice
			27.4.2 Wheat
			27.4.3 Potato
			27.4.4 Tomato
			27.4.5 Soybeans
			27.4.6 Cassava
		27.5 Biosafety considerations
		27.6 Conclusion and future prospect
		Acknowledgments
		References
Chapter-28---Phytoalexin-biosynthesis-through-RNA-interfe_2021_CRISPR-and-RN
	28 Phytoalexin biosynthesis through RNA interference for disease resistance in plants
		28.1 Introduction
		28.2 Utility of phytoalexins
		28.3 Diversity of phytoalexins
		28.4 Detoxification of phytoalexins
		28.5 RNA interference
			28.5.1 Brief history of RNA interference
			28.5.2 Steps involved in RNA interference
			28.5.3 Components of RNA interference
		28.6 RNA interference in phytoalexin biosynthesis
			28.6.1 RNA interference for elucidation of the gene(s) involved in biosynthesis of phytoalexins
			28.6.2 RNA interference for suppression of negative regulators of phytoalexins
			28.6.3 RNA interference for antidetoxification of phytoalexins by pathogens
		28.7 Conclusions
		References
Chapter-29---Polymer-and-lipid-based-nanoparticles-to-de_2021_CRISPR-and-RNA
	29 Polymer and lipid-based nanoparticles to deliver RNAi and CRISPR systems
		29.1 Introduction
		29.2 Polymer-based nanoparticles and their properties
		29.3 Natural polymers
			29.3.1 Alginate
			29.3.2 Dextran
			29.3.3 Cyclodextrin
			29.3.4 Gelatin—a protein polymer
		29.4 Synthetic polymers
			29.4.1 Polylactic-co-glycolic acid
			29.4.2 Poly-ε-caprolactone
		29.5 Delivery of polymer-based nanoparticle
			29.5.1 Lipid-based PNPs
			29.5.2 Dendrimers
			29.5.3 Biopolymeric based PNPs
			29.5.4 Nanostructure lipid-multilayer gene carrier
			29.5.5 Magnetic nanoparticle-based LipoMag
		29.6 Polymer and lipid-based nanoparticles-mediated delivery towards advancing plant genetic engineering
			29.6.1 Polymer and lipid-based nanoparticles for efficient delivery of siRNA
			29.6.2 Polymer and lipid-based nanocarriers deliver siRNA to intact plant cells
		29.7 Polymer and lipid-based nanoparticles transfection enhances RNAi and CRISPR systems in plants
		29.8 Advantages of polymer and lipid-based nanoparticles
		29.9 Future directions and concluding remarks
		29.10 Conclusion
		References
Chapter-30---Inorganic-smart-nanoparticles--a-new-tool-to_2021_CRISPR-and-RN
	30 Inorganic smart nanoparticles: a new tool to deliver CRISPR systems into plant cells
		30.1 Introduction
		30.2 Inorganic nanocarriers for gene delivery
			30.2.1 Silica nanoparticle-based transient gene
			30.2.2 Carbon-nanotubes transient gene
			30.2.3 Magnetic nanoparticle-based transient gene
			30.2.4 Gold nanoparticle-based transient gene
		30.3 Internalization mechanisms
		30.4 Agri-food applications
		30.5 Limitations of gene nanocarriers
		30.6 Further recommendations and conclusion
		References
Chapter-31---Regulatory-aspects--risk-assessment--and-toxi_2021_CRISPR-and-R
	31 Regulatory aspects, risk assessment, and toxicity associated with RNAi and CRISPR methods
		31.1 Introduction
		31.2 Regulatory aspects of RNAi and CRISPR methods
			31.2.1 USA and Canada
				31.2.1.1 USA
				31.2.1.2 Canada
			31.2.2 European Union
				31.2.2.1 Approval for deliberate release
				31.2.2.2 Approval for food and feed purpose
				31.2.2.3 Post approval considerations
				31.2.2.4 RNAi-based regulations
				31.2.2.5 CRISPR-based regulations
			31.2.3 China
			31.2.4 Pakistan
			31.2.5 Other countries
				31.2.5.1 Australia
				31.2.5.2 Brazil
				31.2.5.3 Argentina
				31.2.5.4 Chile
				31.2.5.5 New Zealand
				31.2.5.6 Japan
		31.3 Toxicity and risk assessment of RNAi and CRISPR methods
			31.3.1 Toxicity and risk assessment of RNAi
				31.3.1.1 Molecular characterization
				31.3.1.2 Food and feed toxicity and risk assessment of RNAi
				31.3.1.3 Environmental toxicity and risk assessment of RNAi
			31.3.2 Toxicity and risk assessment of CRISPR
				31.3.2.1 Toxicity and risk assessment associated with off-targeting effects of CRISPR
				31.3.2.2 Toxicity and risk assessment associated with persisted Cas9 activity
			31.3.3 Toxicity and risk assessment of RNAi and CRISPR using 10 step approach
		31.4 Conclusion and outlook
		References
		Further reading
Chapter-32---Gene-editing-in-filamentous-fungi-and-oomyc_2021_CRISPR-and-RNA
	32 Gene editing in filamentous fungi and oomycetes using CRISPR-Cas technology
		32.1 Introduction
		32.2 Characteristics of oomycetes
		32.3 Principles of CRISPR technology
		32.4 Gene editing in oomycetes
			32.4.1 Gene editing for pathogen prevention in oomycetes
			32.4.2 Gene editing for identification of virulence gene in oomycetes and fungi
			32.4.3 Expected application of CRISPR-Cas toolkit to other oomycetes
		32.5 Gene editing in filamentous fungi
			32.5.1 CRISPR-mediated endonucleases use in filamentous fungi
			32.5.2 CRISPR-Cas-mediated single-gene disruption in filamentous fungi
			32.5.3 CRISPR-Cas-mediated multiple gene disruption in filamentous fungi
			32.5.4 Gene editing in industrial filamentous fungi by CRISPR-Cas
			32.5.5 CRISPR-Cas-mediated genetic manipulation of pathogenic filamentous fungi
			32.5.6 DNA and selectable-marker-free genome editing in filamentous fungi
		32.6 Concluding remarks and future perspective
		References
Chapter-33---CRISPR-Cas-technology-towards-improvement-of_2021_CRISPR-and-RN
	33 CRISPR–Cas technology towards improvement of abiotic stress tolerance in plants
		33.1 Introduction
		33.2 CRISPR–Cas system
		33.3 Harnessing the potential of CRISPR–Cas system against abiotic stresses
			33.3.1 Low or high temperature
			33.3.2 Drought
			33.3.3 Salinity
			33.3.4 Heavy metals
			33.3.5 Herbicides resistance
		33.4 Future perspectives
		33.5 Conclusion
		References
Chapter-34---Databases-and-bioinformatics-tools-for-genome_2021_CRISPR-and-R
	34 Databases and bioinformatics tools for genome engineering in plants using RNA interference
		34.1 Introduction
		34.2 Disadvantages and limitations associated with RNAi
			34.2.1 Strategies to minimize the off-target effects of RNAi
			34.2.2 Designing specific and potent siRNA
		34.3 Online databases for knowledge-based resources of small ncRNAs sequences
		34.4 Online bioinformatics tools for designing highly specific and efficient siRNA/miRNA
		34.5 Conclusion and future prospects
		References
Index_2021_CRISPR-and-RNAi-Systems
	Index




نظرات کاربران