ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Core-Mantle Co-Evolution: An Interdisciplinary Approach

دانلود کتاب تکامل مشترک Core-Mantle: یک رویکرد بین رشته ای

Core-Mantle Co-Evolution: An Interdisciplinary Approach

مشخصات کتاب

Core-Mantle Co-Evolution: An Interdisciplinary Approach

ویرایش:  
نویسندگان: , , ,   
سری: Geophysical Monograph Series, 276 
ISBN (شابک) : 1119526906, 9781119526902 
ناشر: Wiley-AGU 
سال نشر: 2023 
تعداد صفحات: 273
[275] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 23 Mb 

قیمت کتاب (تومان) : 45,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Core-Mantle Co-Evolution: An Interdisciplinary Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تکامل مشترک Core-Mantle: یک رویکرد بین رشته ای نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تکامل مشترک Core-Mantle: یک رویکرد بین رشته ای

بینش جدید در مورد فعل و انفعالات بین هسته و گوشته بررسی مستقیم درون عمیق زمین دشوار است، اما پیشرفت‌های تکنولوژیکی اخیر مشاهدات، آزمایش‌ها، تحلیل‌ها و شبیه‌سازی‌های جدید را برای درک بهتر فرآیندهای اعماق زمین ممکن کرده است. Core Mantle Co-Evolution: An Interdisciplinary Approach به دنبال پرداختن به برخی از مسائل عمده حل نشده در مورد تعامل هسته و گوشته و تکامل مشترک است. این آخرین بینش ها را در مورد دینامیک، ساختار و تکامل در منطقه مرزی هسته و گوشته ارائه می دهد. نکات برجسته حجمی عبارتند از: آخرین پیشرفت‌های تکنولوژیکی در آزمایش‌های فشار بالا و کاربرد آنها برای درک خواص فیزیکی مواد معدنی و پایداری فازها در عمق زمین پیشرفت‌های اخیر در لرزه‌شناسی رصدی، آنالیز ژئوشیمیایی، آزمایش‌های ژئونوترینو، و مدل‌سازی عددی برای درک ناهمگنی گوشته پایین‌تر تحقیقات نظری در مورد تکامل حرارتی-شیمیایی گوشته و هسته زمین کاوش برهمکنش های حرارتی-شیمیایی-مکانیکی-الکترومغناطیسی در مناطق مرزی هسته- گوشته اتحادیه ژئوفیزیک آمریکا کشف در زمین و علوم فضایی را به نفع بشریت ترویج می کند. انتشارات آن دانش علمی را منتشر می کند و منابعی را برای محققان، دانشجویان و متخصصان فراهم می کند.


توضیحاتی درمورد کتاب به خارجی

New insights into interactions between the core and mantle The Earth\'s deep interior is difficult to study directly but recent technological advances have enabled new observations, experiments, analysis, and simulations to better understand deep Earth processes. Core Mantle Co-Evolution: An Interdisciplinary Approach seeks to address some of the major unsolved issues around the core-mantle interaction and co-evolution. It provides the latest insights into dynamics, structure, and evolution in the core-mantle boundary region. Volume highlights include: Latest technological advances in high pressure experiments and their application to understanding the mineral physical properties and stability of phases in deep Earth Recent progress in observational seismology, geochemical analysis, geoneutrino experiments, and numerical modeling for understanding the heterogeneity of the lower mantle Theoretical investigations on thermal-chemical evolution of Earth\'s mantle and core Exploring thermal-chemical-mechanical-electromagnetic interactions in the core-mantle boundary regions The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.



فهرست مطالب

Cover
Title Page
Copyright
Contents
List of Contributors
Preface
Part I Structure and Dynamics of the Deep Mantle: Toward Core‐Mantle Co‐Evolution
	Chapter 1 Neutrino Geoscience: Review, Survey, Future Prospects
		1.1 Introduction
		1.2 Neutrino Geoscience
			1.2.1 Background Terms
		1.3 Detectors and Detection Technology
			1.3.1 Technical Details for Detecting Geoneutrinos
			1.3.2 Detectors: Existing, Being Built, Being Planned
		1.4 Latest Results from the Physics Experiments
		1.5 Compositional Models for the Earth
		1.6 The Geological Predictions
		1.7 Determining the Radioactive Power in the Mantle
		1.8 Future Prospects
		Acknowledgments
		References
	Chapter 2 Trace Element Abundance Modeling with Gamma Distribution for Quantitative Balance Calculations
		2.1 Introduction
		2.2 Problems
		2.3 Method
		2.4 Evaluation of the Method
		2.5 Discussion
		2.6 Conclusions
		2.7 Supporting Examples and Proof
			2.7.1 An Example Showing that the Median is Not Additive
			2.7.2 An Example Showing that Log‐normal Models have Bias on the Mean Value
			2.7.3 An Example Showing that Logistic‐normal Models have Bias on the Mean Value
			2.7.4 Proof of the Conservation of the Mean Value in the Gamma Model
		Acknowledgments
		References
	Chapter 3 Seismological Studies of Deep Earth Structure Using Seismic Arrays in East, South, and Southeast Asia, and Oceania
		3.1 Introduction
		3.2 Seismic Arrays In East, South, and Southeast Asia, And Oceania that Contribute to Deep Earth Studies
			3.2.1 Japan
				Matsushiro Seismic Array System (MSAS) and Seismic Observation Networks of the Japan Meteorological Agency and Japanese Universities
				J‐Array
				Hi‐net
				F‐net
			3.2.2 China and Adjacent Areas
				China Digital Seismograph Network (CDSN), China National Seismic Network (CNSN), and Chinese Regional Seismic Network (CRSN)
				INDEPTH, Hi‐CLIMB, Namche Barwa, 2003MIT‐China, and GHENGIS
				North China Craton
				NECESSArray
			3.2.3 Taiwan
			3.2.4 Korea
			3.2.5 Vietnam
			3.2.6 India
			3.2.7 Indonesia
			3.2.8 Thailand
			3.2.9 Australia
				Warramunga and Alice Springs Arrays
				SKIPPY and Others
			3.2.10 Micronesia, Melanesia, and Polynesia
		3.3 Discussion
			3.3.1 Summary of the Achievements and Continuing Issues
			3.3.2 Future Perspective with Consideration for Land and Sea Floor Observations
		Acknowledgments
		References
	Chapter 4 Preliminary Results from the New Deformation Multi‐Anvil Press at the Photon Factory: Insight into the Creep Strength of Calcium Silicate Perovskite
		4.1 Introduction
		4.2 The D111 Press on NE7A at KEK
		4.3 The Rheological Behavior of Ca‐Pv
			4.3.1 Experimental Details
			4.3.2 Stress‐Strain Data Processing
		4.4 Results
		4.5 Discussion
		4.6 Conclusions
		Acknowledgments
		References
	Chapter 5 Deciphering Deep Mantle Processes from Isotopic and Highly Siderophile Element Compositions of Mantle‐Derived Rocks: Prospects and Limitations
		5.1 Introduction
		5.2 Isotopic Compositions of OIBs
			5.2.1 Previous Works on the Origin of Isotopic Convergent Areas and Their Issues
			5.2.2 Modeling Parameters
				Chemical Compositions of the Oceanic Crust
				Recycling Ages
				Dehydration Conditions of Oceanic Crust
				Dehydration Conditions of Serpentinites
			5.2.3 Results of Modeling: Possible Isotopic Range of Recycled Oceanic Crusts
			5.2.4 FOZO as a Candidate for the Detection of Core‐Mantle Interactions
		5.3 Os and 182W Isotope Systematics of Rocks Derived from the Deep Mantle
			5.3.1 Os Isotope Systematics of Deep Mantle‐Derived Rocks
			5.3.2 W Isotopes as a Tracer of Deep Mantle Processes
			5.3.3 182W Isotope Variations of OIBs and Kimberlites
			5.3.4 Possible Effect of Crustal Recycling on 182W Isotopes of OIBs
		5.4 HSE Geochemistry of the Mantle
			5.4.1 HSE Composition of the Primitive Mantle
			5.4.2 HSE Behavior in Partial Melting of the Mantle
				Experimental Constraints on the Fractionation of HSEs During Partial Melting of Peridotite
				Melt Extraction Trends of HSEs in the Mantle: Experimental Constraints Versus Natural Peridotites
			5.4.3 Influence of Metasomatism
			5.4.4 Validity of the Chondritic HSE “Overabundance” in the Mantle
		5.5 Summary
		Acknowledgments
		References
	Chapter 6 Numerical Examination of the Dynamics of Subducted Crustal Materials with Different Densities
		6.1 Introduction
		6.2 Modeling Density
		6.3 Geodynamics Modeling
			6.3.1 Model Setup
			6.3.2 Numerical Results
		6.4 Discussion and Conclusions
		Acknowledgments
		References
Part II Core‐Mantle Interaction: An Interdisciplinary Approach
	Chapter 7 Some Issues on Core‐Mantle Chemical Interactions: The Role of Core Formation Processes
		7.1 Introduction
		7.2 Core Formation and the Composition of the Core and the Mantle
			7.2.1 A Core Formation Model
			7.2.2 Siderophile Elements
		7.3 Core‐Mantle Chemical Interaction
			7.3.1 Is the Core a Source or a Sink of Volatile and Siderophile Elements?
			7.3.2 Meso‐Scale Material Transport: The Morphological Instability
		7.4 Discussions
			7.4.1 Plausibility of the Proto‐Core Model for Highly Siderophile Elements (HSE)
			7.4.2 Hydrogen in the Core
			7.4.3 Other Factors Controlling the Element Transport Across the Core‐Mantle Boundary
		7.5 Summary and Concluding Remarks
		Acknowledgments
		References
	Chapter 8 Heat Flow from the Earth's Core Inferred from Experimentally Determined Thermal Conductivity of the Deep Lower Mantle
		8.1 Introduction
		8.2 Modeling of Lower Mantle Thermal Conductivity with Brief Reviews
		8.3 Temperature Profiles in the Thermal Boundary Layer and Core‐Mantle Boundary Heat Flux
			8.3.1 Temperature Profiles in the Thermal Boundary Layer
			8.3.2 Core‐Mantle Boundary Heat Flux and its Implications
		8.4 Future Perspectives of Thermal Conductivity Measurements on Lower Mantle Minerals
		Acknowledgments
		References
	Chapter 9 Assessment of a Stable Region of Earth's Core Requiring Magnetic Field Generation over Four Billion Years
		9.1 Introduction
			9.1.1 Geophysical Observations of a Stable Layer at the Top of the Earth's Outer Core
			9.1.2 Mineral Physics Interpretations
			9.1.3 Interpretations Using Theoretical/Numerical Models: Which Origin gives a Better Understanding of the Geophysical Observation Incorporating Mineral Physics?
			9.1.4 What do We Investigate Here?
		9.2 Model and Analysis Strategy
			9.2.1 Reference Structure
			9.2.2 Global Energy and Mass Balance
			9.2.3 Magnetic Evolution
			9.2.4 Analysis Strategy
		9.3 Results
			9.3.1 One‐Dimensional Convective Structure
			9.3.2 Back Trace of Core Evolution
			9.3.3 Exceptional Cases: A Stable Region with Long‐Term Magnetic Field Generation
		9.4 Discussion
		9.5 Summary
		Acknowledgments
		References
	Chapter 10 Inner Core Anisotropy from Antipodal PKIKP Traveltimes
		10.1 Introduction
		10.2 Data and Their Volumetric Coverage
			10.2.1 Waveform Data
			10.2.2 Absolute PKIKP Traveltime Measurements
			10.2.3 Global Coverage of the Inner Core
		10.3 Results
			10.3.1 Mantle Heterogeneity Corrections
			10.3.2 Outer Inner Core (OIC) Anisotropy Corrections
			10.3.3 Interpreting PKIKP Residuals with Anisotropy
			10.3.4 Bayesian Approach to the PKIKP Residuals Modeling
		10.4 Discussion
		10.5 Concluding Remarks
		Acknowledgments
		Availability Statement
		References
	Chapter 11 Recent Progress in High‐Pressure Experiments on the Composition of the Core
		11.1 Introduction
			11.1.1 Structure of the Earth's Core
			11.1.2 Light Elements in the Core
			11.1.3 Chemical Evolution of the Core
			11.1.4 Trace Elements and Isotopic Chemistry of the Core
		11.2 High‐Pressure Experiments
			11.2.1 High‐Pressure Apparatuses
			11.2.2 Diamond Anvil Cell (DAC)
			11.2.3 Large Volume Press
			11.2.4 Shock Compression
		11.3 Experimental Results and Implications for the Core
			11.3.1 Measurements Using Synchrotron X‐ray
			11.3.2 Melting Temperature
			11.3.3 Chemical Analysis and the Melting Phase Relationships
			11.3.4 Density of Liquid Iron
			11.3.5 Sound Velocity of Iron Alloys
			11.3.6 Candidate of the Core Light Elements
		Acknowledgments
		References
	Chapter 12 Dynamics in Earth's Core Arising from Thermo‐Chemical Interactions with the Mantle
		12.1 Introduction
		12.2 Material Properties of the Core
			12.2.1 Bulk Composition of the Core and Basal Magma Ocean
			12.2.2 Core Temperature and Energy Balance
			12.2.3 Core Thermal Conductivity
		12.3 Mass Transfer at the CMB
			12.3.1 Chemical Equilibrium at the CMB
			12.3.2 Partitioning of MgO at the CMB
			12.3.3 Partitioning of FeO at the CMB
			12.3.4 Partitioning of Multiple Species at the CMB
		12.4 Stratification below the CMB
			12.4.1 Modern‐Day Observations of Stratification
			12.4.2 Direct Numerical Simulations (DNS) and Theory
			12.4.3 Evolution of Thermal Stratification
			12.4.4 Evolution of Chemical Stratification
		12.5 Chemical Precipitation
		12.6 Toward Resolving the New Core Paradox
		12.7 Conclusions
		Acknowledgments
		References
INDEX
EULA




نظرات کاربران