دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Jun Du. Chunxiao Jiang
سری: Wireless Networks
ISBN (شابک) : 9811976473, 9789811976476
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 460
[461]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 Mb
در صورت تبدیل فایل کتاب Cooperation and Integration in 6G Heterogeneous Networks: Resource Allocation and Networking به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب همکاری و یکپارچه سازی در شبکه های ناهمگن 6G: تخصیص منابع و شبکه سازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
برای ارائه خدمات همهجانبه و متنوع، شبکههای 6G با ادغام شبکههای زمینی فعلی با شبکههای اطلاعاتی مبتنی بر فضا/هوا و شبکههای اطلاعات دریایی، جامعتر و چند بعدیتر هستند. سپس منابع شبکه ناهمگن و همچنین انواع مختلف کاربران و داده ها نیز یکپارچه خواهند شد. انتظار می رود که شبکه های ناهمگن 6G با توجه به تقاضاهای رو به رشد نمایی ترافیک داده های چند رسانه ای و برنامه های محاسباتی سنگین، به QoS بالا با قابلیت اطمینان فوق العاده و تأخیر کم دست یابند. در پاسخ، تخصیص منابع به عنوان یک عامل مهم در نظر گرفته شده است که می تواند عملکرد 6G را مستقیماً با پیکربندی ارتباطات ناهمگن، محاسبات و ذخیره منابع به طور موثر و کارآمد بهبود بخشد.
این کتاب به طیف وسیعی از مسائل فنی در تخصیص منابع مشارکتی و به اشتراک گذاری اطلاعات برای شبکه های ناهمگن 6G آینده، از شبکه های فوق متراکم زمینی و شبکه های مبتنی بر فضا گرفته تا ماهواره های یکپارچه می پردازد. شبکه های زمینی و همچنین معرفی اثرات رفتار مشارکتی در بین کاربران تلفن همراه بر افزایش ظرفیت، قابلیت اعتماد و حفظ حریم خصوصی. برای انتقال مشارکتی در شبکههای ناهمگن، نویسندگان با مشکلات تخلیه ترافیک در شبکههای فوق متراکم زمینی و مکانیسمهای شناختی و مشارکتی در شبکههای مبتنی بر فضای ناهمگن شروع میکنند که تحلیل پایداری آن نیز ارائه شده است. علاوه بر این، برای انتقال مشارکتی در شبکههای ماهوارهای-زمینی یکپارچه، نویسندگان یک جفت استراتژی تخصیص منابع پویا و تطبیقی برای تخلیه ترافیک، شکلدهی پرتو مشارکتی و انتقال مشارکتی مبتنی بر پیشبینی ترافیک ارائه میکنند. بعداً، نویسندگان، محاسبات مشترک و تخصیص منابع ذخیرهسازی را در شبکههای ناهمگن، با برجستهسازی ارائه مطالعات فعلی ما در مورد نظریه بازی، نظریه حراج و رویکردهای مبتنی بر یادگیری تقویتی عمیق، مورد بحث قرار میدهند. در همین حال، نویسندگان منابع مشارکتی و اشتراک اطلاعات بین کاربران را معرفی میکنند که در آن مکانیسمهای تعاونی ظرفیتمحور، اعتماد گرا و حریم خصوصی مورد بررسی قرار میگیرند. در نهایت نتیجه گیری می شود.To provide ubiquitous and various services, 6G networks tend to be more comprehensive and multidimensional by integrating current terrestrial networks with space-/air-based information networks and marine information networks; then, heterogeneous network resources, as well as different types of users and data, will be also integrated. Driven by the exponentially growing demands of multimedia data traffic and computation-heavy applications, 6G heterogenous networks are expected to achieve a high QoS with ultra-reliability and low latency. In response, resource allocation has been considered an important factor that can improve 6G performance directly by configuring heterogeneous communication, computing and caching resources effectively and efficiently.
The book addresses a range of technical issues in cooperative resource allocation and information sharing for the future 6G heterogenous networks, from the terrestrial ultra-dense networks and space-based networks to the integrated satellite-terrestrial networks, as well as introducing the effects of cooperative behavior among mobile users on increasing capacity, trustworthiness and privacy. For the cooperative transmission in heterogeneous networks, the authors commence with the traffic offloading problems in terrestrial ultra-dense networks, and the cognitive and cooperative mechanisms in heterogeneous space-based networks, the stability analysis of which is also provided. Moreover, for the cooperative transmission in integrated satellite-terrestrial networks, the authors present a pair of dynamic and adaptive resource allocation strategies for traffic offloading, cooperative beamforming and traffic prediction based cooperative transmission. Later, the authors discuss the cooperative computation and caching resource allocation in heterogeneous networks, with the highlight of providing our current studies on the game theory, auction theory and deep reinforcement learning based approaches. Meanwhile, the authors introduce the cooperative resource and information sharing among users, in which capacity oriented-, trustworthiness oriented-, and privacy oriented cooperative mechanisms are investigated. Finally, the conclusion is drawn.Foreword Contents About the Authors Part I Introduction 1 Introduction of 6G Heterogeneous Networks 1.1 Heterogeneous Architecture of 6G Networks 1.2 Challenges of Heterogeneous Resource Allocation 1.2.1 Heterogeneous Resource Modeling and Performance Evaluation 1.2.2 Task Adaptation and Resource Efficiency 1.2.3 Interference Control and Secure Communications 1.3 Mathematic Tools for Resource Allocation 1.3.1 Information Economics Theory 1.3.2 Machine Learning and Artificial Intelligence References Part II Cooperative Transmission in Heterogeneous Networks 2 Introduction of Cooperative Transmission in Heterogeneous Networks 3 Traffic Offloading in Heterogeneous Networks 3.1 Introduction 3.2 Architecture of SDWN 3.3 Contract Formulation for Traffic Offloading 3.3.1 Transmission Model Formulation 3.3.2 Economic Models Formulation 3.4 Contract Design for Traffic Offloading 3.4.1 Contract Design with Information Asymmetry 3.4.1.1 Individual Rationality (IR) 3.4.1.2 Incentive Compatibility (IC) 3.4.2 Contract Design Without Information Asymmetry 3.4.3 Contract Design by Linear Pricing 3.5 Conditions for Contract Feasibility 3.6 Simulation Results 3.7 Conclusion References 4 Cooperative Resource Allocation in Heterogeneous Space-Based Networks 4.1 Introduction 4.2 Related Works 4.3 System Model 4.3.1 ON/OFF Model 4.3.1.1 ISL Connection Status 4.3.1.2 Satellite-Ground Station Link Connection Status 4.3.2 Physical Channel Model 4.4 Cooperative Resource Allocation Protocol 4.4.1 GEO Relay 4.4.2 LEO Relay 4.5 Stability Analysis 4.5.1 GEO Relay 4.5.2 LEO Relay 4.5.3 Multiple Users Case 4.6 Simulation Results 4.7 Conclusion 4.8 Proof of Lemma 4.1 4.9 Proof of Lemma 4.2 References Part III Cooperative Transmission in IntegratedSatellite-Terrestrial Networks 5 Introduction of Cooperative Transmission in Integrated Satellite-Terrestrial Networks 6 Traffic Offloading in Satellite-Terrestrial Networks 6.1 Introduction 6.2 Related Works 6.3 Architecture of SDN 6.3.1 Service Plane 6.3.2 Control Plane 6.3.2.1 Information Collection 6.3.2.2 Strategy Distribution 6.3.3 Management Plane 6.4 System Model of Traffic Offloading in H-STN 6.4.1 Fully-Loaded Transmission 6.4.2 Satellite\'s Transmission Rate Through Each Channel 6.4.2.1 Transmission Rates Under Interference 6.4.2.2 Transmission Rates Under Non-Interference 6.4.3 BSs\' Cooperative and Competitive Modes 6.4.3.1 Cooperative Mode 6.4.3.2 Competitive Mode 6.5 Second-Price Auction Based Traffic Offloading Mechanism Design 6.5.1 Second-Price Auction 6.5.2 Auction Operation 6.5.3 Outcomes of Auction-Based Traffic Offloading 6.6 Satellite\'s Equilibrium Bidding Strategies 6.6.1 Bidding Strategy for ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper R Subscript thr Baseline element of left parenthesis mu Subscript min Baseline comma mu Subscript max Baseline right bracket) /StPNE pdfmark [/StBMC pdfmarkRthr( μmin,μmax ]ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark 6.6.2 Bidding Strategy for ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper R Subscript thr Baseline element of left parenthesis mu Subscript max Baseline comma left parenthesis 1 plus StartFraction 1 minus beta Over upper N EndFraction right parenthesis mu Subscript max Baseline right parenthesis) /StPNE pdfmark [/StBMC pdfmarkRthr ( μmax, (1+1-βN)μmax)ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark 6.6.3 Bidding Strategy for ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper R Subscript thr Baseline element of left bracket left parenthesis 1 plus StartFraction 1 minus beta Over upper N EndFraction right parenthesis mu Subscript max Baseline comma plus normal infinity right parenthesis) /StPNE pdfmark [/StBMC pdfmarkRthr[ ( 1+1-βN )μmax,+∞)ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark 6.6.4 Bidding Strategy for ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper R Subscript thr Baseline element of left bracket 0 comma mu Subscript min Baseline right bracket) /StPNE pdfmark [/StBMC pdfmarkRthr[ 0,μmin ]ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark 6.7 Expected Utility Analysis for MNO 6.7.1 Utility Analysis for ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper R Subscript thr Baseline element of left parenthesis mu Subscript min Baseline comma mu Subscript max Baseline right bracket) /StPNE pdfmark [/StBMC pdfmarkRthr( μmin,μmax ]ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark 6.7.2 Utility Analysis for ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper R Subscript thr Baseline element of left parenthesis mu Subscript max Baseline comma left parenthesis 1 plus StartFraction 1 minus beta Over upper N EndFraction right parenthesis mu Subscript max Baseline right parenthesis) /StPNE pdfmark [/StBMC pdfmarkRthr ( μmax, (1+1-βN)μmax)ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark 6.7.3 Utility Analysis for ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper R Subscript thr Baseline element of left bracket left parenthesis 1 plus StartFraction 1 minus beta Over upper N EndFraction right parenthesis mu Subscript max Baseline comma plus normal infinity right parenthesis) /StPNE pdfmark [/StBMC pdfmarkRthr[ ( 1+1-βN )μmax,+∞)ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark 6.7.4 Utility Analysis for ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper R Subscript thr Baseline element of left bracket 0 comma mu Subscript min Baseline right bracket) /StPNE pdfmark [/StBMC pdfmarkRthr[ 0,μmin ]ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark 6.8 Simulation Results 6.8.1 Beam Group\'s Strategy of the Satellite 6.8.2 Expected Utility of the MNO 6.9 Conclusion 6.10 Proof of Lemma 6.1 6.11 Proof of Theorem 6.1 6.11.1 ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (mu Subscript n Baseline element of left bracket upper R Subscript thr Baseline comma mu Subscript max Baseline right bracket) /StPNE pdfmark [/StBMC pdfmarkμn[ Rthr,μmax ]ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark 6.11.1.1 Case 1 6.11.1.2 Case 2 6.11.2 ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (mu Subscript n Baseline element of left parenthesis ModifyingAbove mu With tilde Subscript a Baseline left parenthesis upper R Subscript thr Baseline right parenthesis comma upper R Subscript thr Baseline right parenthesis) /StPNE pdfmark [/StBMC pdfmarkμn( μ̃a( Rthr ),Rthr )ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark 6.11.2.1 ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper R Subscript thr) /StPNE pdfmark [/StBMC pdfmarkRthrps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark vs ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (empty set) /StPNE pdfmark [/StBMC pdfmarkps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark 6.11.2.2 ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper R Subscript thr) /StPNE pdfmark [/StBMC pdfmarkRthrps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark vs ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (ModifyingAbove mu With caret element of left bracket upper R Subscript thr Baseline comma plus normal infinity right parenthesis) /StPNE pdfmark [/StBMC pdfmark[ Rthr,+∞)ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark 6.11.3 ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (mu Subscript n Baseline equals ModifyingAbove mu With tilde Subscript a Baseline left parenthesis upper R Subscript thr Baseline right parenthesis) /StPNE pdfmark [/StBMC pdfmarkμn=μ̃a( Rthr )ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark 6.11.4 ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (mu Subscript n Baseline element of left bracket mu Subscript min Baseline comma ModifyingAbove mu With tilde Subscript a Baseline left parenthesis upper R Subscript thr Baseline right parenthesis right parenthesis) /StPNE pdfmark [/StBMC pdfmarkμn[ μmin,μ̃a( Rthr ) )ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark 6.12 Proof of Theorem 6.3 References 7 Cooperative Beamforming for Secure Satellite-Terrestrial Transmission 7.1 Introduction 7.2 Related Works 7.2.1 Satellite Terrestrial Networks 7.2.2 Physical Layer Security 7.3 System Model 7.3.1 Channel Model 7.3.2 Received Signal Model 7.3.3 Signal-to-Interference Plus Noise Ratio 7.3.4 Achievable Secrecy Rate 7.4 Secure Transmission Beamforming Schemes for Satellite Terrestrial Networks 7.4.1 Non-Cooperative Beamforming for Secure Transmission 7.4.2 Cooperative Secure Beamforming for Secure Transmission 7.5 Solutions of the Optimization Problems 7.5.1 Feasible Solution of the Optimization Problems 7.5.2 Path-Pursuit Iteration Based Approach 7.5.2.1 Approximation of Optimization Problems 7.5.2.2 Path-Pursuit Iteration Based Algorithm Design 7.5.3 Feasibility of Path-Pursuit Iteration Based Solution 7.5.4 Complexity Analysis 7.6 Simulation Experiments and Analysis 7.7 Conclusion 7.8 Proof of Theorem 7.1 7.9 Proof of Theorem 7.2 References 8 Traffic Prediction Based Transmission in Satellite-Terrestrial Networks 8.1 Introduction 8.2 Related Works 8.3 System Model 8.3.1 The Traffic Model 8.3.2 Physical Channel Model 8.3.3 The Cloud-Based Predictive Service Model 8.3.4 The Queueing Model 8.4 Wavelet Based Backpropagation Prediction for Traffic 8.4.1 Multi-Level Wavelet Decomposition 8.4.2 Backpropagation Neural Network Prediction 8.4.3 Wavelet Based Backpropagation Prediction 8.5 Resource Allocation Based on the Predictive Backpressure 8.5.1 Dynamic Evolution of Queues 8.5.2 Prediction Based Backpressure 8.6 Simulation Results and Analysis 8.6.1 Video Traffic Model 8.6.2 Performance of Wavelet Based Backpropagation Prediction 8.6.3 Performance of Predictive Backpressure 8.7 Conclusion References Part IV Cooperative Computation and Caching in Heterogeneous Networks 9 Introduction of Cooperative Computation and Caching 10 QoS-Aware Computational Resource Allocation 10.1 Introduction 10.2 Related Works 10.3 SDN Architecture Design for Edge/Cloud Computing Systems 10.3.1 Infrastructure Plane 10.3.2 Control Plane 10.3.2.1 Information Collection 10.3.2.2 Strategy Distribution 10.3.3 Management Plane 10.4 System Model and Hierarchical Game Framework 10.4.1 System Model 10.4.2 Hierarchical Game Framework 10.4.2.1 Evolutionary Game in User Level 10.4.2.2 Stackelberg Differential Game in Resource Level 10.5 Evolutionary Game for Service Selection of User Devices 10.5.1 Evolutionary Game Based Service Selection 10.5.1.1 Players 10.5.1.2 Strategy 10.5.1.3 Population States 10.5.1.4 Utility 10.5.1.5 Replicator Dynamic 10.5.2 Existence and Uniqueness of Equilibrium 10.5.3 Analysis of Evolutionary Stable State (ESS) 10.6 Stackelberg Differential Game Based Dynamic Computational Power Pricing and Allocation 10.6.1 Formulation of Stackelberg Differential Game 10.6.1.1 Maximization of Integral Utility for ECPs 10.6.1.2 Maximization of Integral Utility for CCP 10.6.2 Open-Loop Stackelberg Equilibrium Solutions 10.6.2.1 Open-Loop Stackelberg Equilibrium of ECPs 10.6.2.2 Open-Loop Stackelberg Equilibrium of CCP 10.6.2.3 Open-Loop Stackelberg Equilibrium Solutions 10.7 Simulation Results 10.7.1 Evolution of Population Distribution 10.7.2 Dynamic Pricing and Allocation of Computing Resource 10.7.3 Influence of Delay in Replicator Dynamics 10.8 Conclusion References 11 QoS-Aware Caching Resource Allocation 11.1 Introduction 11.2 Related Works 11.3 System Model 11.3.1 Network Model 11.3.2 Video Popularity 11.3.3 VSP Preference 11.4 Caching Problem Formulation and Profit Analysis 11.4.1 Caching Procedure 11.4.1.1 SBS Assignment 11.4.1.2 Video File Placing 11.4.1.3 MU Video Requests 11.4.2 Benefit Analysis 11.4.2.1 VSP Utility 11.4.2.2 MNO Cost 11.5 Double Auction Mechanism Design for Small-Cell Based Caching System 11.5.1 Social Welfare Maximization Problem 11.5.2 Iterative Double Auction Mechanism Design 11.5.2.1 I-DA Based Resource Allocation 11.5.2.2 I-DA Based Pricing 11.6 Implementation of I-DA Mechanism 11.6.1 I-DA Mechanism Based Algorithm 11.6.2 Convergence of I-DA Algorithm 11.6.3 Economic Properties of I-DA Mechanism 11.7 Evaluation Results 11.8 Conclusion References 12 Priority-Aware Computational Resource Allocation 12.1 Introduction 12.2 Related Work 12.2.1 Computation Offloading Optimization In VEC 12.2.2 Computation Offloading Optimization in VFC 12.2.3 DRL-Based Computation Offloading Optimization in VFC 12.3 System Model 12.3.1 System Architecture 12.3.2 Mobility Model 12.3.3 Communication Model 12.3.4 Computation Model 12.3.5 Task Model 12.3.6 Service Availability 12.3.7 Pricing Model 12.4 Formulation of Optimization Problem for Task Offloading 12.5 SAC Based DRL Algorithm for Task Offloading 12.5.1 State Space 12.5.2 Action Space 12.5.3 Reward Function 12.5.4 Policy and Value Function 12.5.5 Policy Evaluation 12.5.6 Policy Improvement 12.5.7 Algorithm Design Based on SAC 12.5.8 Complexity Analysis 12.6 Performance Evaluation 12.6.1 Simulation Setup 12.6.2 Average Utility 12.6.3 Completion Ratio 12.6.4 Average Delay 12.7 Conclusion References 13 Energy-Aware Computational Resource Allocation 13.1 Introduction 13.2 Related Works 13.3 System Model 13.3.1 Task Model 13.3.2 Local Computing 13.3.3 Offloading Computing 13.3.4 Energy Harvesting 13.4 Hybrid Decision Based DRL For Dynamic Computation Offloading 13.4.1 MDP Modeling 13.4.1.1 States 13.4.1.2 Action 13.4.1.3 Reward 13.4.2 Hybrid Decision Based DRL Method 13.4.2.1 Continuous Action Updating 13.4.2.2 Discrete Action Updating 13.5 Multi-Device Hybrid Decision Based DRL for Dynamic Computation Offloading 13.6 Performance Evaluations 13.7 Simulation Results 13.7.1 General Setups 13.7.2 Performance of Convergence and Generalizability 13.7.3 Performance Evaluation of Hybrid-AC with Different System Parameters 13.7.3.1 Performance vs Different Task Requested Probability ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (zeta) /StPNE pdfmark [/StBMC pdfmarkζps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark 13.7.3.2 Performance vs Different Maximum Harvested Energy ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (e Subscript max) /StPNE pdfmark [/StBMC pdfmarkemaxps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark 13.7.4 Performance Evaluation of MD-Hybrid-AC with Different System Parameters 13.7.4.1 Performance vs Different Server\'s Occupied Resource Units ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (lamda) /StPNE pdfmark [/StBMC pdfmarkλps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark 13.7.4.2 Performance vs Differentiated Server Capacities 13.8 Conclusion References Part V Cooperative Resource and Information Sharing Among Users 14 Introduction of Cooperative Resource and Information Sharing 15 Cooperative Data Transaction in Mobile Networks 15.1 Introduction 15.1.1 Motivation 15.1.1.1 Feasibility of Data Transaction 15.1.1.2 Effective and Efficient Data Transaction 15.1.1.3 Changing Demands of Selling and Buying Data 15.1.2 Contribution 15.2 Related Work 15.3 Data Allocation of Single Data Provider 15.3.1 Basic Auction Mechanism 15.3.2 Data Allocation for Single-Auctioneer Transaction 15.3.2.1 Efficiency Aware Data Allocation 15.3.2.2 Efficiency and Request Aware Data Allocation 15.4 Networked Auction Model for Data Transaction with Multiple Auctioneers 15.4.1 Networked Auction Model 15.4.2 Mobility Model 15.4.3 Expected Income of Networked Systems 15.4.4 Data Allocation for Networked Data Transaction 15.4.4.1 Non-cooperative Distributed Data Allocation (NDDA) 15.4.4.2 Prediction-Based Cooperative Distributed Data Allocation (PCDDA) 15.4.4.3 Prediction-Based Centralized Data Allocation (PCDA) 15.5 Operation of Data Allocation for Data Transaction Systems 15.5.1 Approximate Solution of Optimization Problems 15.5.2 Data Allocation for Data Transaction 15.6 Performance Evaluation 15.6.1 Data Transaction Systems with Single Auctioneer 15.6.2 Data Transaction Systems with Multi-Auctioneer 15.7 Conclusion References 16 Cooperative Trustworthiness Evaluation and Trustworthy Service Rating 16.1 Introduction 16.2 Related Works 16.3 Mathematical Model for Service Rating Based on User Report Fusion 16.3.1 System Model 16.3.2 Service Rating Based on User Report Fusion 16.4 Peer Prediction for User Trustworthiness 16.4.1 Private-Prior Peer Prediction Mechanism 16.4.1.1 Prior Belief Reports to the Cloud 16.4.1.2 Posterior Belief Reports to the Cloud 16.4.1.3 Inferred Opinion Reports 16.4.1.4 User Trustworthiness 16.4.2 Incentive Compatibility 16.4.2.1 Binary Logarithmic Scoring Rule 16.4.2.2 Binary Quadratic Scoring Rule 16.5 User Trustworthiness and Unreliability Based Service Rating 16.5.1 Unreliability of User Report 16.5.2 Peer Prediction Based Service Rating 16.6 Performance Evaluation 16.6.1 Simulation Settings 16.6.2 Accumulative Trustworthiness and Unreliability 16.6.3 Influence of ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (epsilon) /StPNE pdfmark [/StBMC pdfmarkps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark, Scoring Rules and User Structure 16.7 Conclusions References 17 Cooperative Privacy Protection Among Mobile User 17.1 Introduction 17.2 Related Works 17.3 Community Structure Based Evolutionary Game Formulation 17.3.1 Basic Concept of Evolutionary Game 17.3.2 Community Structured Evolutionary Game Formulation 17.4 Privacy Protection Among Users Belonging to K Communities 17.4.1 Evolution of Security Behavior on Communities 17.4.2 Finding the Critical Ratio 17.5 Privacy Protection Among Users with L-Triggering Game 17.5.1 L-Triggering Game 17.5.1.1 Case 1: ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper L equals 1) /StPNE pdfmark [/StBMC pdfmarkL=1ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark 17.5.1.2 Case 2: ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (1 less than upper L less than or equals upper K) /StPNE pdfmark [/StBMC pdfmark1