ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Cooperation and Integration in 6G Heterogeneous Networks: Resource Allocation and Networking

دانلود کتاب همکاری و یکپارچه سازی در شبکه های ناهمگن 6G: تخصیص منابع و شبکه سازی

Cooperation and Integration in 6G Heterogeneous Networks: Resource Allocation and Networking

مشخصات کتاب

Cooperation and Integration in 6G Heterogeneous Networks: Resource Allocation and Networking

ویرایش:  
نویسندگان:   
سری: Wireless Networks 
ISBN (شابک) : 9811976473, 9789811976476 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 460
[461] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 14 Mb 

قیمت کتاب (تومان) : 50,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Cooperation and Integration in 6G Heterogeneous Networks: Resource Allocation and Networking به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب همکاری و یکپارچه سازی در شبکه های ناهمگن 6G: تخصیص منابع و شبکه سازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب همکاری و یکپارچه سازی در شبکه های ناهمگن 6G: تخصیص منابع و شبکه سازی



برای ارائه خدمات همه‌جانبه و متنوع، شبکه‌های 6G با ادغام شبکه‌های زمینی فعلی با شبکه‌های اطلاعاتی مبتنی بر فضا/هوا و شبکه‌های اطلاعات دریایی، جامع‌تر و چند بعدی‌تر هستند. سپس منابع شبکه ناهمگن و همچنین انواع مختلف کاربران و داده ها نیز یکپارچه خواهند شد. انتظار می رود که شبکه های ناهمگن 6G با توجه به تقاضاهای رو به رشد نمایی ترافیک داده های چند رسانه ای و برنامه های محاسباتی سنگین، به QoS بالا با قابلیت اطمینان فوق العاده و تأخیر کم دست یابند. در پاسخ، تخصیص منابع به عنوان یک عامل مهم در نظر گرفته شده است که می تواند عملکرد 6G را مستقیماً با پیکربندی ارتباطات ناهمگن، محاسبات و ذخیره منابع به طور موثر و کارآمد بهبود بخشد.

این کتاب به طیف وسیعی از مسائل فنی در تخصیص منابع مشارکتی و به اشتراک گذاری اطلاعات برای شبکه های ناهمگن 6G آینده، از شبکه های فوق متراکم زمینی و شبکه های مبتنی بر فضا گرفته تا ماهواره های یکپارچه می پردازد. شبکه های زمینی و همچنین معرفی اثرات رفتار مشارکتی در بین کاربران تلفن همراه بر افزایش ظرفیت، قابلیت اعتماد و حفظ حریم خصوصی. برای انتقال مشارکتی در شبکه‌های ناهمگن، نویسندگان با مشکلات تخلیه ترافیک در شبکه‌های فوق متراکم زمینی و مکانیسم‌های شناختی و مشارکتی در شبکه‌های مبتنی بر فضای ناهمگن شروع می‌کنند که تحلیل پایداری آن نیز ارائه شده است. علاوه بر این، برای انتقال مشارکتی در شبکه‌های ماهواره‌ای-زمینی یکپارچه، نویسندگان یک جفت استراتژی تخصیص منابع پویا و تطبیقی ​​برای تخلیه ترافیک، شکل‌دهی پرتو مشارکتی و انتقال مشارکتی مبتنی بر پیش‌بینی ترافیک ارائه می‌کنند. بعداً، نویسندگان، محاسبات مشترک و تخصیص منابع ذخیره‌سازی را در شبکه‌های ناهمگن، با برجسته‌سازی ارائه مطالعات فعلی ما در مورد نظریه بازی، نظریه حراج و رویکردهای مبتنی بر یادگیری تقویتی عمیق، مورد بحث قرار می‌دهند. در همین حال، نویسندگان منابع مشارکتی و اشتراک اطلاعات بین کاربران را معرفی می‌کنند که در آن مکانیسم‌های تعاونی ظرفیت‌محور، اعتماد گرا و حریم خصوصی مورد بررسی قرار می‌گیرند. در نهایت نتیجه گیری می شود.

توضیحاتی درمورد کتاب به خارجی

To provide ubiquitous and various services, 6G networks tend to be more comprehensive and multidimensional by integrating current terrestrial networks with space-/air-based information networks and marine information networks; then, heterogeneous network resources, as well as different types of users and data, will be also integrated. Driven by the exponentially growing demands of multimedia data traffic and computation-heavy applications, 6G heterogenous networks are expected to achieve a high QoS with ultra-reliability and low latency. In response, resource allocation has been considered an important factor that can improve 6G performance directly by configuring heterogeneous communication, computing and caching resources effectively and efficiently. 

The book addresses a range of technical issues in cooperative resource allocation and information sharing for the future 6G heterogenous networks, from the terrestrial ultra-dense networks and space-based networks to the integrated satellite-terrestrial networks, as well as introducing the effects of cooperative behavior among mobile users on increasing capacity, trustworthiness and privacy. For the cooperative transmission in heterogeneous networks, the authors commence with the traffic offloading problems in terrestrial ultra-dense networks, and the cognitive and cooperative mechanisms in heterogeneous space-based networks, the stability analysis of which is also provided. Moreover, for the cooperative transmission in integrated satellite-terrestrial networks, the authors present a pair of dynamic and adaptive resource allocation strategies for traffic offloading, cooperative beamforming and traffic prediction based cooperative transmission. Later, the authors discuss the cooperative computation and caching resource allocation in heterogeneous networks, with the highlight of providing our current studies on the game theory, auction theory and deep reinforcement learning based approaches. Meanwhile, the authors introduce the cooperative resource and information sharing among users, in which capacity oriented-, trustworthiness oriented-, and privacy oriented cooperative mechanisms are investigated. Finally, the conclusion is drawn.


فهرست مطالب

Foreword
Contents
About the Authors
Part I Introduction
	1 Introduction of 6G Heterogeneous Networks
		1.1 Heterogeneous Architecture of 6G Networks
		1.2 Challenges of Heterogeneous Resource Allocation
			1.2.1 Heterogeneous Resource Modeling and Performance Evaluation
			1.2.2 Task Adaptation and Resource Efficiency
			1.2.3 Interference Control and Secure Communications
		1.3 Mathematic Tools for Resource Allocation
			1.3.1 Information Economics Theory
			1.3.2 Machine Learning and Artificial Intelligence
		References
Part II Cooperative Transmission in Heterogeneous Networks
	2 Introduction of Cooperative Transmission in Heterogeneous Networks
	3 Traffic Offloading in Heterogeneous Networks
		3.1 Introduction
		3.2 Architecture of SDWN
		3.3 Contract Formulation for Traffic Offloading
			3.3.1 Transmission Model Formulation
			3.3.2 Economic Models Formulation
		3.4 Contract Design for Traffic Offloading
			3.4.1 Contract Design with Information Asymmetry
				3.4.1.1 Individual Rationality (IR)
				3.4.1.2 Incentive Compatibility (IC)
			3.4.2 Contract Design Without Information Asymmetry
			3.4.3 Contract Design by Linear Pricing
		3.5 Conditions for Contract Feasibility
		3.6 Simulation Results
		3.7 Conclusion
		References
	4 Cooperative Resource Allocation in Heterogeneous Space-Based Networks
		4.1 Introduction
		4.2 Related Works
		4.3 System Model
			4.3.1 ON/OFF Model
				4.3.1.1 ISL Connection Status
				4.3.1.2 Satellite-Ground Station Link Connection Status
			4.3.2 Physical Channel Model
		4.4 Cooperative Resource Allocation Protocol
			4.4.1 GEO Relay
			4.4.2 LEO Relay
		4.5 Stability Analysis
			4.5.1 GEO Relay
			4.5.2 LEO Relay
			4.5.3 Multiple Users Case
		4.6 Simulation Results
		4.7 Conclusion
		4.8 Proof of Lemma 4.1
		4.9 Proof of Lemma 4.2
		References
Part III Cooperative Transmission in IntegratedSatellite-Terrestrial Networks
	5 Introduction of Cooperative Transmission in Integrated Satellite-Terrestrial Networks
	6 Traffic Offloading in Satellite-Terrestrial Networks
		6.1 Introduction
		6.2 Related Works
		6.3 Architecture of SDN
			6.3.1 Service Plane
			6.3.2 Control Plane
				6.3.2.1 Information Collection
				6.3.2.2 Strategy Distribution
			6.3.3 Management Plane
		6.4 System Model of Traffic Offloading in H-STN
			6.4.1 Fully-Loaded Transmission
			6.4.2 Satellite\'s Transmission Rate Through Each Channel
				6.4.2.1 Transmission Rates Under Interference
				6.4.2.2 Transmission Rates Under Non-Interference
			6.4.3 BSs\' Cooperative and Competitive Modes
				6.4.3.1 Cooperative Mode
				6.4.3.2 Competitive Mode
		6.5 Second-Price Auction Based Traffic Offloading Mechanism Design
			6.5.1 Second-Price Auction
			6.5.2 Auction Operation
			6.5.3 Outcomes of Auction-Based Traffic Offloading
		6.6 Satellite\'s Equilibrium Bidding Strategies
			6.6.1 Bidding Strategy for ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper R Subscript thr Baseline element of left parenthesis mu Subscript min Baseline comma mu Subscript max Baseline right bracket) /StPNE pdfmark [/StBMC pdfmarkRthr( μmin,μmax ]ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
			6.6.2 Bidding Strategy for ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper R Subscript thr Baseline element of left parenthesis mu Subscript max Baseline comma left parenthesis 1 plus StartFraction 1 minus beta Over upper N EndFraction right parenthesis mu Subscript max Baseline right parenthesis) /StPNE pdfmark [/StBMC pdfmarkRthr ( μmax, (1+1-βN)μmax)ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
			6.6.3 Bidding Strategy for ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper R Subscript thr Baseline element of left bracket left parenthesis 1 plus StartFraction 1 minus beta Over upper N EndFraction right parenthesis mu Subscript max Baseline comma plus normal infinity right parenthesis) /StPNE pdfmark [/StBMC pdfmarkRthr[ ( 1+1-βN )μmax,+∞)ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
			6.6.4 Bidding Strategy for ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper R Subscript thr Baseline element of left bracket 0 comma mu Subscript min Baseline right bracket) /StPNE pdfmark [/StBMC pdfmarkRthr[ 0,μmin ]ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
		6.7 Expected Utility Analysis for MNO
			6.7.1 Utility Analysis for ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper R Subscript thr Baseline element of left parenthesis mu Subscript min Baseline comma mu Subscript max Baseline right bracket) /StPNE pdfmark [/StBMC pdfmarkRthr( μmin,μmax ]ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
			6.7.2 Utility Analysis for ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper R Subscript thr Baseline element of left parenthesis mu Subscript max Baseline comma left parenthesis 1 plus StartFraction 1 minus beta Over upper N EndFraction right parenthesis mu Subscript max Baseline right parenthesis) /StPNE pdfmark [/StBMC pdfmarkRthr ( μmax, (1+1-βN)μmax)ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
			6.7.3 Utility Analysis for ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper R Subscript thr Baseline element of left bracket left parenthesis 1 plus StartFraction 1 minus beta Over upper N EndFraction right parenthesis mu Subscript max Baseline comma plus normal infinity right parenthesis) /StPNE pdfmark [/StBMC pdfmarkRthr[ ( 1+1-βN )μmax,+∞)ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
			6.7.4 Utility Analysis for ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper R Subscript thr Baseline element of left bracket 0 comma mu Subscript min Baseline right bracket) /StPNE pdfmark [/StBMC pdfmarkRthr[ 0,μmin ]ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
		6.8 Simulation Results
			6.8.1 Beam Group\'s Strategy of the Satellite
			6.8.2 Expected Utility of the MNO
		6.9 Conclusion
		6.10 Proof of Lemma 6.1
		6.11 Proof of Theorem 6.1
			6.11.1 ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (mu Subscript n Baseline element of left bracket upper R Subscript thr Baseline comma mu Subscript max Baseline right bracket) /StPNE pdfmark [/StBMC pdfmarkμn[ Rthr,μmax ]ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
				6.11.1.1 Case 1
				6.11.1.2 Case 2
			6.11.2 ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (mu Subscript n Baseline element of left parenthesis ModifyingAbove mu With tilde Subscript a Baseline left parenthesis upper R Subscript thr Baseline right parenthesis comma upper R Subscript thr Baseline right parenthesis) /StPNE pdfmark [/StBMC pdfmarkμn( μ̃a( Rthr ),Rthr )ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
				6.11.2.1 ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper R Subscript thr) /StPNE pdfmark [/StBMC pdfmarkRthrps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark vs ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (empty set) /StPNE pdfmark [/StBMC pdfmarkps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
				6.11.2.2 ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper R Subscript thr) /StPNE pdfmark [/StBMC pdfmarkRthrps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark vs ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (ModifyingAbove mu With caret element of left bracket upper R Subscript thr Baseline comma plus normal infinity right parenthesis) /StPNE pdfmark [/StBMC pdfmark[ Rthr,+∞)ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
			6.11.3 ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (mu Subscript n Baseline equals ModifyingAbove mu With tilde Subscript a Baseline left parenthesis upper R Subscript thr Baseline right parenthesis) /StPNE pdfmark [/StBMC pdfmarkμn=μ̃a( Rthr )ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
			6.11.4 ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (mu Subscript n Baseline element of left bracket mu Subscript min Baseline comma ModifyingAbove mu With tilde Subscript a Baseline left parenthesis upper R Subscript thr Baseline right parenthesis right parenthesis) /StPNE pdfmark [/StBMC pdfmarkμn[ μmin,μ̃a( Rthr ) )ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
		6.12 Proof of Theorem 6.3
		References
	7 Cooperative Beamforming for Secure Satellite-Terrestrial Transmission
		7.1 Introduction
		7.2 Related Works
			7.2.1 Satellite Terrestrial Networks
			7.2.2 Physical Layer Security
		7.3 System Model
			7.3.1 Channel Model
			7.3.2 Received Signal Model
			7.3.3 Signal-to-Interference Plus Noise Ratio
			7.3.4 Achievable Secrecy Rate
		7.4 Secure Transmission Beamforming Schemes for Satellite Terrestrial Networks
			7.4.1 Non-Cooperative Beamforming for Secure Transmission
			7.4.2 Cooperative Secure Beamforming for Secure Transmission
		7.5 Solutions of the Optimization Problems
			7.5.1 Feasible Solution of the Optimization Problems
			7.5.2 Path-Pursuit Iteration Based Approach
				7.5.2.1 Approximation of Optimization Problems
				7.5.2.2 Path-Pursuit Iteration Based Algorithm Design
			7.5.3 Feasibility of Path-Pursuit Iteration Based Solution
			7.5.4 Complexity Analysis
		7.6 Simulation Experiments and Analysis
		7.7 Conclusion
		7.8 Proof of Theorem 7.1
		7.9 Proof of Theorem 7.2
		References
	8 Traffic Prediction Based Transmission in Satellite-Terrestrial Networks
		8.1 Introduction
		8.2 Related Works
		8.3 System Model
			8.3.1 The Traffic Model
			8.3.2 Physical Channel Model
			8.3.3 The Cloud-Based Predictive Service Model
			8.3.4 The Queueing Model
		8.4 Wavelet Based Backpropagation Prediction for Traffic
			8.4.1 Multi-Level Wavelet Decomposition
			8.4.2 Backpropagation Neural Network Prediction
			8.4.3 Wavelet Based Backpropagation Prediction
		8.5 Resource Allocation Based on the Predictive Backpressure
			8.5.1 Dynamic Evolution of Queues
			8.5.2 Prediction Based Backpressure
		8.6 Simulation Results and Analysis
			8.6.1 Video Traffic Model
			8.6.2 Performance of Wavelet Based Backpropagation Prediction
			8.6.3 Performance of Predictive Backpressure
		8.7 Conclusion
		References
Part IV Cooperative Computation and Caching in Heterogeneous Networks
	9 Introduction of Cooperative Computation and Caching
	10 QoS-Aware Computational Resource Allocation
		10.1 Introduction
		10.2 Related Works
		10.3 SDN Architecture Design for Edge/Cloud Computing Systems
			10.3.1 Infrastructure Plane
			10.3.2 Control Plane
				10.3.2.1 Information Collection
				10.3.2.2 Strategy Distribution
			10.3.3 Management Plane
		10.4 System Model and Hierarchical Game Framework
			10.4.1 System Model
			10.4.2 Hierarchical Game Framework
				10.4.2.1 Evolutionary Game in User Level
				10.4.2.2 Stackelberg Differential Game in Resource Level
		10.5 Evolutionary Game for Service Selection of User Devices
			10.5.1 Evolutionary Game Based Service Selection
				10.5.1.1 Players
				10.5.1.2 Strategy
				10.5.1.3 Population States
				10.5.1.4 Utility
				10.5.1.5 Replicator Dynamic
			10.5.2 Existence and Uniqueness of Equilibrium
			10.5.3 Analysis of Evolutionary Stable State (ESS)
		10.6 Stackelberg Differential Game Based Dynamic Computational Power Pricing and Allocation
			10.6.1 Formulation of Stackelberg Differential Game
				10.6.1.1 Maximization of Integral Utility for ECPs
				10.6.1.2 Maximization of Integral Utility for CCP
			10.6.2 Open-Loop Stackelberg Equilibrium Solutions
				10.6.2.1 Open-Loop Stackelberg Equilibrium of ECPs
				10.6.2.2 Open-Loop Stackelberg Equilibrium of CCP
				10.6.2.3 Open-Loop Stackelberg Equilibrium Solutions
		10.7 Simulation Results
			10.7.1 Evolution of Population Distribution
			10.7.2 Dynamic Pricing and Allocation of Computing Resource
			10.7.3 Influence of Delay in Replicator Dynamics
		10.8 Conclusion
		References
	11 QoS-Aware Caching Resource Allocation
		11.1 Introduction
		11.2 Related Works
		11.3 System Model
			11.3.1 Network Model
			11.3.2 Video Popularity
			11.3.3 VSP Preference
		11.4 Caching Problem Formulation and Profit Analysis
			11.4.1 Caching Procedure
				11.4.1.1 SBS Assignment
				11.4.1.2 Video File Placing
				11.4.1.3 MU Video Requests
			11.4.2 Benefit Analysis
				11.4.2.1 VSP Utility
				11.4.2.2 MNO Cost
		11.5 Double Auction Mechanism Design for Small-Cell Based Caching System
			11.5.1 Social Welfare Maximization Problem
			11.5.2 Iterative Double Auction Mechanism Design
				11.5.2.1 I-DA Based Resource Allocation
				11.5.2.2 I-DA Based Pricing
		11.6 Implementation of I-DA Mechanism
			11.6.1 I-DA Mechanism Based Algorithm
			11.6.2 Convergence of I-DA Algorithm
			11.6.3 Economic Properties of I-DA Mechanism
		11.7 Evaluation Results
		11.8 Conclusion
		References
	12 Priority-Aware Computational Resource Allocation
		12.1 Introduction
		12.2 Related Work
			12.2.1 Computation Offloading Optimization In VEC
			12.2.2 Computation Offloading Optimization in VFC
			12.2.3 DRL-Based Computation Offloading Optimization in VFC
		12.3 System Model
			12.3.1 System Architecture
			12.3.2 Mobility Model
			12.3.3 Communication Model
			12.3.4 Computation Model
			12.3.5 Task Model
			12.3.6 Service Availability
			12.3.7 Pricing Model
		12.4 Formulation of Optimization Problem for Task Offloading
		12.5 SAC Based DRL Algorithm for Task Offloading
			12.5.1 State Space
			12.5.2 Action Space
			12.5.3 Reward Function
			12.5.4 Policy and Value Function
			12.5.5 Policy Evaluation
			12.5.6 Policy Improvement
			12.5.7 Algorithm Design Based on SAC
			12.5.8 Complexity Analysis
		12.6 Performance Evaluation
			12.6.1 Simulation Setup
			12.6.2 Average Utility
			12.6.3 Completion Ratio
			12.6.4 Average Delay
		12.7 Conclusion
		References
	13 Energy-Aware Computational Resource Allocation
		13.1 Introduction
		13.2 Related Works
		13.3 System Model
			13.3.1 Task Model
			13.3.2 Local Computing
			13.3.3 Offloading Computing
			13.3.4 Energy Harvesting
		13.4 Hybrid Decision Based DRL For Dynamic Computation Offloading
			13.4.1 MDP Modeling
				13.4.1.1 States
				13.4.1.2 Action
				13.4.1.3 Reward
			13.4.2 Hybrid Decision Based DRL Method
				13.4.2.1 Continuous Action Updating
				13.4.2.2 Discrete Action Updating
		13.5 Multi-Device Hybrid Decision Based DRL for Dynamic Computation Offloading
		13.6 Performance Evaluations
		13.7 Simulation Results
			13.7.1 General Setups
			13.7.2 Performance of Convergence and Generalizability
			13.7.3 Performance Evaluation of Hybrid-AC with Different System Parameters
				13.7.3.1 Performance vs Different Task Requested Probability ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (zeta) /StPNE pdfmark [/StBMC pdfmarkζps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
				13.7.3.2 Performance vs Different Maximum Harvested Energy ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (e Subscript max) /StPNE pdfmark [/StBMC pdfmarkemaxps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
			13.7.4 Performance Evaluation of MD-Hybrid-AC with Different System Parameters
				13.7.4.1 Performance vs Different Server\'s Occupied Resource Units ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (lamda) /StPNE pdfmark [/StBMC pdfmarkλps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
				13.7.4.2 Performance vs Differentiated Server Capacities
		13.8 Conclusion
		References
Part V Cooperative Resource and Information Sharing Among Users
	14 Introduction of Cooperative Resource and Information Sharing
	15 Cooperative Data Transaction in Mobile Networks
		15.1 Introduction
			15.1.1 Motivation
				15.1.1.1 Feasibility of Data Transaction
				15.1.1.2 Effective and Efficient Data Transaction
				15.1.1.3 Changing Demands of Selling and Buying Data
			15.1.2 Contribution
		15.2 Related Work
		15.3 Data Allocation of Single Data Provider
			15.3.1 Basic Auction Mechanism
			15.3.2 Data Allocation for Single-Auctioneer Transaction
				15.3.2.1 Efficiency Aware Data Allocation
				15.3.2.2 Efficiency and Request Aware Data Allocation
		15.4 Networked Auction Model for Data Transaction with Multiple Auctioneers
			15.4.1 Networked Auction Model
			15.4.2 Mobility Model
			15.4.3 Expected Income of Networked Systems
			15.4.4 Data Allocation for Networked Data Transaction
				15.4.4.1 Non-cooperative Distributed Data Allocation (NDDA)
				15.4.4.2 Prediction-Based Cooperative Distributed Data Allocation (PCDDA)
				15.4.4.3 Prediction-Based Centralized Data Allocation (PCDA)
		15.5 Operation of Data Allocation for Data Transaction Systems
			15.5.1 Approximate Solution of Optimization Problems
			15.5.2 Data Allocation for Data Transaction
		15.6 Performance Evaluation
			15.6.1 Data Transaction Systems with Single Auctioneer
			15.6.2 Data Transaction Systems with Multi-Auctioneer
		15.7 Conclusion
		References
	16 Cooperative Trustworthiness Evaluation and Trustworthy Service Rating
		16.1 Introduction
		16.2 Related Works
		16.3 Mathematical Model for Service Rating Based on User Report Fusion
			16.3.1 System Model
			16.3.2 Service Rating Based on User Report Fusion
		16.4 Peer Prediction for User Trustworthiness
			16.4.1 Private-Prior Peer Prediction Mechanism
				16.4.1.1 Prior Belief Reports to the Cloud
				16.4.1.2 Posterior Belief Reports to the Cloud
				16.4.1.3 Inferred Opinion Reports
				16.4.1.4 User Trustworthiness
			16.4.2 Incentive Compatibility
				16.4.2.1 Binary Logarithmic Scoring Rule
				16.4.2.2 Binary Quadratic Scoring Rule
		16.5 User Trustworthiness and Unreliability Based Service Rating
			16.5.1 Unreliability of User Report
			16.5.2 Peer Prediction Based Service Rating
		16.6 Performance Evaluation
			16.6.1 Simulation Settings
			16.6.2 Accumulative Trustworthiness and Unreliability
			16.6.3 Influence of ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (epsilon) /StPNE pdfmark [/StBMC pdfmarkps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark, Scoring Rules and User Structure
		16.7 Conclusions
		References
	17 Cooperative Privacy Protection Among Mobile User
		17.1 Introduction
		17.2 Related Works
		17.3 Community Structure Based Evolutionary Game Formulation
			17.3.1 Basic Concept of Evolutionary Game
			17.3.2 Community Structured Evolutionary Game Formulation
		17.4 Privacy Protection Among Users Belonging to K Communities
			17.4.1 Evolution of Security Behavior on Communities
			17.4.2 Finding the Critical Ratio
		17.5 Privacy Protection Among Users with L-Triggering Game
			17.5.1 L-Triggering Game
				17.5.1.1 Case 1: ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (upper L equals 1) /StPNE pdfmark [/StBMC pdfmarkL=1ps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark
				17.5.1.2 Case 2: ps: [/EMC pdfmark [/objdef Equ /Subtype /Span /ActualText (1 less than upper L less than or equals upper K) /StPNE pdfmark [/StBMC pdfmark1




نظرات کاربران