دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Ahmad Taher Azar (editor)
سری:
ISBN (شابک) : 0128174617, 9780128174616
ناشر: Academic Press
سال نشر: 2020
تعداد صفحات: 460
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 25 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Control Applications for Biomedical Engineering Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب برنامه های کاربردی کنترل برای سیستم های مهندسی زیست پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
برنامه های کنترلی برای سیستم های مهندسی زیست پزشکی کاربردهای مهندسی کنترل و مدل سازی متفاوتی را در زمینه زیست پزشکی ارائه می دهد. این برای دانشجویان ارشد یا کارشناسی ارشد در هر دو رشته مهندسی کنترل و مهندسی زیست پزشکی در نظر گرفته شده است. برای دانشجویان مهندسی کنترل، کاربرد تکنیکهای مختلفی را که قبلاً در سخنرانیهای نظری در عرصه زیستپزشکی آموختهاند، ارائه میکند. برای دانشجویان مهندسی زیست پزشکی، راه حل هایی را برای مشکلات مختلف در این زمینه با استفاده از روش هایی که معمولاً توسط مهندسان کنترل استفاده می شود، ارائه می دهد.
Control Applications for Biomedical Engineering Systems presents different control engineering and modeling applications in the biomedical field. It is intended for senior undergraduate or graduate students in both control engineering and biomedical engineering programs. For control engineering students, it presents the application of various techniques already learned in theoretical lectures in the biomedical arena. For biomedical engineering students, it presents solutions to various problems in the field using methods commonly used by control engineers.
Cover Control Applications for Biomedical Engineering Systems Copyright Contributors Foreword Preface About the book Objectives of the book Organization of the book Book features Audience Acknowledgments 1 Neuro-fuzzy inverse optimal control incorporating a multistep predictor as applied to T1DM patients Introduction Related work Fundamentals Online discrete-time neural network Inverse optimal control The Uva/Padova T1DM simulator Neuro-fuzzy inverse optimal control using multistep prediction Simulation results Discussion Conclusions Acknowledgments References 2 Blood glucose regulation in patients with type 1 diabetes by means of output-feedback sliding mode control Introduction Motivation State of the art of the control algorithms for blood glucose regulation Dual-hormone strategy Contributions Chapter outline Mathematical model Methodology and control objectives Glycemic curve Food ingestion as input disturbances Bihormonal actuator FOSMC: Design and stability analysis Boundary layer for chattering alleviation Terminal sliding mode control: Design and stability analysis Continuous nonsingular terminal sliding mode control for chattering alleviation HOSM exact differentiators for output feedback Numerical examples Discontinuous FOSMC with estimate of sliding variable using exact differentiator Continuous FOSMC with estimate of sliding variable using exact differentiator and boundary layer Discontinuous nonsingular terminal sliding mode control Continuous nonsingular terminal sliding mode control Conclusions References Further readings 3 Impulsive MPC schemes for biomedical processes: Application to type 1 diabetes Introduction Dynamic systems with short-duration inputs Underlying discrete-time subsystem Extended equilibrium of the impulsive system Pulse input scheme MPC formulation for impulsive systems Case study: Type 1 diabetes mellitus An enhanced model for type 1 diabetes patients Glucose dynamics Insulin and digestion dynamics Affine state space model Equilibrium and controllability characterization of the model Identification Impulsive scheme State observation schemes Impulsive model predictive control (iZMPC) Results of the observer/control scheme Discussion Conclusions References 4 Robust control applications in biomedical engineering: Control of depth of hypnosis Introduction Measurement of depth of hypnosis Bispectral analysis Wavelet analysis Dynamic model of hypnosis PK model of propofol PD model of propofol PKPD model and its uncertainty Control of depth of hypnosis Linearization Nominal model Evaluation indices Robust PID control scheme Robust H control scheme Conclusion References 5 Robust control strategy for HBV treatment: Considering parametric and nonparametric uncertainties Introduction HBV mathematical model Robust controller design Lyapunov stability Numerical results Untreated HBV infection Treated HBV infection using the proposed robust strategy Desired scenarios Results of the first desired scenario Effect of reduction rate on desired treatment scenario Discussion and interpretation of the results (comparison of untreated and treated HBV using two scenarios) Limitation of the study Conclusion Future directions of research References 6 A closed loop robust control system for electrosurgical generators Introduction Working and design specifications of electrosurgical unit Mathematical modeling of electro surgical unit Controller formulation for electro surgical unit Results and discussion Conclusion References 7 Application of a T-S unknown input observer for studying sitting control for people living with spinal cord injury Introduction Modeling Model description Euler Lagrange formulation Remarks Unstable model Descriptor form justification Unmeasured premise variables Notations Stabilization Discrete-time and Takagi-Sugeno framework Design of the control law Observation Takagi-Sugeno formalism Design of the unknown input observer with uncertainties Proof of convergence Validation results Numerical simulations Simulation protocol Simulation results Experimental protocol Protocol Results Conclusions and future works References 8 Epidemic modeling and control of HIV/AIDS dynamics in populations under external interactions: A worldwide cha ... Introduction Related works The single society mathematical model Stability analysis Equilibrium points Stability analysis Equilibria and stability analysis under constant inputs Analysis of the case u1(t) = u1 = const, u2(t) = u3(t) = 0 Computation of the equilibrium points for u10 Stability analysis for u10 Analysis of the case u1(t) = u3(t) = 0 and u2(t) = u2 Equilibria computation for u20 Stability analysis for the equilibrium xi1e(u2) Stability analysis for the equilibrium xi2ei(u2) The interactions between populations Equilibria under external interactions Equilibrium points and stability properties for the case of healthy population migration Equilibrium points and stability properties for the case of infected population migration The effects of migration parameters on the individuals evolutions Discussion of the results Conclusions and future developments References 9 Reinforcement learning-based control of drug dosing with applications to anesthesia and cancer therapy Introduction Motivation Literature review Drug-dosing control for anesthesia administration Drug-dosing control for cancer chemotherapy RL-based algorithms Control of BIS by accounting for MAP Problem formulation Learning an optimal policy Pharmacokinetic and pharmacodynamic patient model Closed-loop control of BIS and MAP using RL Details of the simulation Results and discussion Control of BIS by accounting for synergistic drug interaction Training the RL agent Simulated patient Results and discussion Control of cancer chemotherapy treatment Mathematical model of cancer chemotherapy RL-based optimal control for chemotherapic drug dosing Results and discussion Summary Acknowledgments References 10 Control strategies in general anesthesia administration Introduction Anesthesia delivery today Open-loop or closed-loop anesthesia? Classic feedback vs model-predictive control of anesthesia Case study: Model-predictive control of anesthesia with propofol and remifentanil Propofol Remifentanil Classic and physiologically based pharmacokinetic-pharmacodynamic models Model predictive control principles Simulation of surgical operations in different patients Ethical concerns and clinical outcomes of closed-loop controlled anesthesia Guarantee of the safety of new technology and management of timing and process for implementation Patient´s informed consent Training and credentialing physicians in new technology or technique Track and assessment of new technology outcomes Balancing responsibilities to patients and society Clinical impact and risks Conclusions References 11 Computational modeling of the control mechanisms involved in the respiratory system Introduction Control mechanisms in the respiratory system Gas exchange at the pulmonary and capillary levels Control of ventilation Computational modeling as a tool for diagnosis and therapy Computational models for different control mechanisms of the respiratory system Other research lines in computer modeling Conclusion Acknowledgments References Further reading 12 Intelligent decision support for lung ventilation Introduction General structure of CDSSs in medicine Type I. Advisory (open-loop) systems Type II. CDSSs for use as both advisory and closed-loop systems CDSSs for mechanical ventilation Design methodologies A model-based CDSS for mechanical ventilation Application of a model-based CDSS in differential lung ventilation Methods Description of the plant Equations of the plant Application of ILV An example of the application of the system Examples of CDSSs used in commercial ventilators An overview of a CDSS used in closed-loop control of mechanical ventilation Conclusion and future directions References 13 Customized modeling and optimal control of superovulation stage in in vitro fertilization (IVF) treatment Introduction Modeling of in vitro fertilization Data organization and moment calculation Model equations FSD evaluation Follicle number prediction algorithm Model validation Results from parameter estimation Optimal control for customized optimal dosage determination Mathematical formulation Solution by maximum principle Results from optimal control Overall approach for customized medicine Clinical trial using the software Summary and future work References 14 Models based on cellular automata for the analysis of biomedical systems Introduction Basic concepts of cellular automata Historical review Applications of cellular automata Epidemiology Oncology Heart electrical conduction system Software techniques Conclusions Acknowledgments References Index A B C D E F G H I J K L M N O P Q R S T U V W Z Back Cover