دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: جبر ویرایش: 9 نویسندگان: Joseph Gallian سری: ISBN (شابک) : 1305657969, 9781305657960 ناشر: Cengage Learning سال نشر: 2016 تعداد صفحات: 631 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 مگابایت
کلمات کلیدی مربوط به کتاب جبر چکیده معاصر: مرجع، سالنامهها و سالنامهها، اطلسها و نقشهها، مشاغل، کاتالوگها و فهرستها، راهنماهای مصرفکننده، واژهنامهها و اصطلاحنامهها، دایرهالمعارفها و راهنمای موضوعی، انگلیسی بهعنوان زبان دوم، آداب، مطالعه زبانهای خارجی و مرجع، Genealogy ,آمادگی آزمون,لغات, زبان و گرامر, نگارش, تحقیق و انتشار راهنماها, ابتدایی, جبر, ریاضیات محض, ریاضیات, علوم و ریاضی, جبر و مثلثات, ریاضیات, علوم و ریاضیات, جدید, مورد استفاده و اجاره ای
در صورت تبدیل فایل کتاب Contemporary Abstract Algebra به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب جبر چکیده معاصر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
جبر انتزاعی معاصر، نسخه نهم اساساً برای درس جبر انتزاعی در نظر گرفته شده است که هدف اصلی آن توانمندسازی دانش آموزان برای انجام محاسبات و نوشتن اثبات است. متن گالیان بر اهمیت دستیابی به مقدمه ای محکم برای موضوعات سنتی جبر انتزاعی تاکید می کند و در عین حال آن را به عنوان یک موضوع معاصر و بسیار فعال ارائه می دهد که در حال حاضر توسط فیزیکدانان، شیمیدانان و دانشمندان کامپیوتری مورد استفاده قرار می گیرد.
CONTEMPORARY ABSTRACT ALGEBRA, NINTH EDITION is primarily intended for an abstract algebra course whose main purpose is to enable students to do computations and write proofs. Gallian's text stresses the importance of obtaining a solid introduction to the traditional topics of abstract algebra, while at the same time presenting it as a contemporary and very much an active subject which is currently being used by working physicists, chemists, and computer scientists.
Content: Part 1. Integers and equivalence relations. Preliminaries. Properties of integers --
Modular arithmetic --
Complex numbers --
Mathematical induction --
Equivalence relations --
Functions (mappings) --
Exercises --
Part 2. Groups. 1. Introduction to groups. Symmetries of a square --
The dihedral groups --
Exercises --
Biography of Niels Abel --
2. Groups. Definition and examples of groups --
Elementary properties of groups --
Historical note --
Exercises --
3. Finite groups
subgroups. Terminology and notation --
Subgroup tests --
Examples of subgroups --
Exercises --
4. Cyclic groups. Properties of cyclic groups --
Classification of subgroups of cyclic groups --
Exercises --
Biography of James Joseph Sylvester --
5. Permutation groups. Definition and notation --
Cycle notation --
Properties of permutations --
A check-digit scheme based on D₅ --
Exercises --
Biography of Augustin Cauchy --
Biography of Alan Turing --
6. Isomorphisms. Motivation --
Definition and examples --
Cayley\'s Theorem --
Properties of isomorphisms --
Automorphisms --
Exercises --
Biography of Arthur Cayley --
7. Cosets and Lagrange\'s Theorem. Properties of Cosets --
Lagrange\'s Theorem and consequences --
An application of Cosets to permutation groups --
The rotation group of a cube and a soccer ball --
An application of Cosets to the Rubik\'s cube --
Exercises --
Biography of Joseph Lagrange --
8. External direct products. Definition and examples --
Properties of external direct products --
The group of units modulo n as an external direct product --
Applications --
Exercises --
Biography of Leonard Adleman --
9. Normal subgroups and factor groups. Normal subgroups --
Factor groups --
Applications of factor groups --
Internal direct products --
Exercises --
Biography of Evariste Galois --
10. Group homomorphisms. Definition and examples --
Properties of homomorphisms --
The first isomorphism theorem --
Exercises --
Biography of Camille Jordan --
11. Fundamental theorem of finite Abelian groups. The fundamental theorem --
The isomorphism classes of Abelian groups --
Proof of the fundamental theorem --
Exercises --
Part 3. Rings. 12. Introduction to rings. Motivation and definition --
Examples of rings --
Properties of rings --
Subrings --
Exercises --
Biography of I.N. Herstein --
13. Integral domains. Definition and examples --
Fields --
Characteristic of a ring --
Exercises --
Biography of Nathan Jacobson --
14. Ideals and factor rings. Ideals --
Factor rings --
Prime ideals and maximal ideals --
Exercises --
Biography of Richard Dedekind --
Biography of Emmy Noether --
15. Ring homomorphisms. Definition and examples --
Properties of ring homomorphisms --
The field of quotients --
Exercises --
Biography of Irving Kaplansky --
16. Polynomial rings. Notation and terminology --
The division algorithm and consequences --
Exercises --
Biography of Saunders Mac Lane --
17. Factorization of polynomials. Reducibility tests --
Irreducibility tests --
Unique factorization in Z[x] --
Weird dice : an application of unique factorization --
Exercises --
Biography of Serge Lang --
18. Divisibility in integral domains. Irreducibles, primes --
Historical discussion of Fermat\'s last theorem --
Unique factorization domains --
Euclidean domains --
Exercises --
Biography of Sophie Germain --
Biography of Andrew Wiles --
Biography of Pierre de Fermat --
Part 4. Fields. 19. Vector spaces. Definition and examples --
Subspaces --
Linear independence --
Exercises --
Biography of Emil Artin --
Biography of Olga Taussky-Todd --
20. Extension fields. The fundamental theorem of field theory --
Splitting fields --
Zeros of an irreducible polynomial --
Exercises --
Biography of Leopold Kronecker --
21. Algebraic extensions. Characterization of extensions --
Finite extensions --
Properties of algebraic extensions --
Exercises --
Biography of Ernst Steinitz --
22. Finite fields. Classification of finite fields --
Structure of finite fields --
Subfields of a finite field --
Exercises --
Biography of L.E. Dickson --
23. Geometric constructions. Historical discussion of geometric constructions --
Constructible numbers --
Angle-trisectors and circle-squarers --
Exercises --
Part 5. Special topics. 24. Sylow theorems. Conjugacy classes --
The class equation --
The Sylow theorems --
Applications of Sylow theorems --
Exercises --
Biography of Oslo Ludwig Sylow --
25. Finite simple groups. Historical background --
Nonsimplicity tests --
The simplicity of A₅ --
The Fields Medal --
The Cole Prize --
Exercises --
Biography of Michael Aschbacher --
Biography of Daniel Gorenstein --
Biography of John Thompson --
26. Generators and relations. Motivation --
Definitions and notation --
Free group --
Generators and relations --
Classification of groups of order up to 15 --
Characterization of dihedral groups --
Realizing the dihedral groups with mirrors --
Exercises --
Biography of Marshall Hall, Jr. --
27. Symmetry groups. Isometries --
Classification of finite plane symmetry groups --
Classification of finite groups of rotations in R³ --
Exercises --
28. Frieze groups and crystallographic groups. The frieze groups --
The crystallographic groups --
Identification of plane periodic patterns --
Exercises --
Biography of M.C. Escher --
Biography of George Pólya --
Biography of John H. Conway --
29. Symmetry and counting. Motivation --
Burnside\'s Theorem --
Applications --
Group action --
Exercises --
Biography of William Burnside --
30. Cayley digraphs of groups. Motivation --
The Cayley digraph of a group --
Hamiltonian circuits and paths --
Some applications --
Exercises --
Biography of William Rowan Hamilton --
Biography of Paul Erdos --
31. Introduction to algebraic coding theory. Motivation --
Linear codes --
Parity-check matrix decoding --
Coset decoding --
Historical note : the ubiquitous Reed-Solomon codes --
Exercises --
Biography of Richard W. Hamming --
Biography of Jessie MacWilliams --
Biography of Vera Pless --
32. An introduction to Galois Theory. Fundamental Theorem of Galois Theory --
Solvability of polynomials by radicals --
Insolvability of a quintic --
Exercises --
Biography of Philip Hall --
33. Cyclotomic extensions. Motivation --
Cyclotomic polynomials --
The constructible regular n-gons --
Exercises --
Biography of Carl Friedrich Gauss --
Biography of Manjul Bhargava.