دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Mousmi Ajay Chaurasia (editor). Stefan Mozar (editor)
سری:
ISBN (شابک) : 9811654107, 9789811654107
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 165
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Contactless Healthcare Facilitation and Commodity Delivery Management During COVID 19 Pandemic (Advanced Technologies and Societal Change) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تسهیل مراقبت های بهداشتی بدون تماس و مدیریت تحویل کالا در طول همه گیر Covid 19 (فناوری های پیشرفته و تغییر اجتماعی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents 1 Detection of Coronavirus from Chest X-ray Images Using 2D Convolutional Neural Network 1.1 Introduction 1.2 Related Works 1.3 Materials and Methods 1.3.1 Dataset 1.3.2 Model Architecture 1.3.3 Performance Metrics 1.4 Experimental Result Analysis 1.4.1 Experiment Setup 1.4.2 Result Analysis 1.5 Conclusion References 2 Interpretation of COVID-19 CT Scans 2.1 Introduction 2.2 Proposed U-Net Architecture 2.2.1 Slice-and-Fuse Strategy 2.2.2 U-Net for Detection 2.2.3 Retraining of U-Net Model 2.2.4 Process Workflow 2.3 Performance Metrics 2.4 Comparison with Recently Reported COVID-19 Segmentation Performance 2.5 Limitations of Implementation Strategies 2.6 Future Scope 2.7 Conclusion References 3 Deep Learning-Based Prediction of nCOVID-19 Disease Using Chest X-ray Images (CXRIs) 3.1 Introduction 3.2 Materials and Methods 3.2.1 Dataset 3.2.2 Model Formulation 3.2.3 Proposed Prediction Process 3.3 Experimental Result and Analysis 3.3.1 Evaluation Metrics 3.4 Conclusion References 4 Explainable Deep Learning Through Grad-CAM and Feature Visualization for the Detection of COVID-19 in Chest X-ray Images 4.1 Introduction 4.2 Literature Study 4.3 Experiments 4.4 Results 4.5 Explainable Deep Learning Results 4.6 Conclusion References 5 Preserving the Privacy of COVID-19 Infected Patients Data Using a Divergent-Scale Supervised Learning for Publishing the Informative Data 5.1 Introduction 5.2 Related Works 5.3 Materials and Methods 5.3.1 Model Description 5.4 Experimental Results 5.5 Conclusion References 6 Personal Cloud System for Hospital Data Management to Store COVID-19 Patients Records 6.1 Introduction 6.1.1 Objective 6.1.2 Purpose 6.1.3 Scope 6.1.4 Organization of the Report 6.2 Previous Studies 6.2.1 Cloud Storage 6.2.2 Raspberry Pi 6.2.3 Network-Attached Storage (NAS) 6.2.4 Reference Papers 6.2.5 Android Studio 6.2.6 Java ME 6.2.7 PHP(Hypertextpreprocessor) 6.2.8 AJAX 6.2.9 Bootstrap 6.2.10 JavaScript 6.3 System Analysis 6.3.1 Existing System 6.3.2 Proposed System 6.3.3 Hardware Requirements 6.3.4 Software Requirements 6.3.5 Feasibility Study 6.4 System Design 6.4.1 System Architecture 6.5 Implementations 6.5.1 Installing Required Packages 6.5.2 Setting Up Database 6.5.3 Modules 6.5.4 Android Studio Modules 6.6 Testing 6.6.1 Unit-Testing 6.6.2 Testing the Functionality 6.7 Screenshots 6.8 Conclusion 6.8.1 Future Enhancements References 7 Strategies and Tools for Effective Suspicious Event Detection from Video: A Survey Perspective (COVID-19) 7.1 Introduction 7.2 Problem Statement and Background Knowledge 7.3 Comparative Analysis of Suspicious Event Detection Tools and Datasets 7.4 Conclusion and Future Work References 8 Smart Water Purifier and Dispenser for Averting Spread of COVID-19 Infection—Machine Learning Approach 8.1 Introduction 8.2 Literature Review 8.3 Challenges 8.4 Methodology 8.5 Description of the Model 8.6 Conclusions References 9 Impact of COVID-19 on Power Sector 9.1 Introduction 9.2 Impact on Power Sector 9.2.1 Impact on Total Power Generation 9.2.2 Impact on Plant Load Factor 9.3 Impact on Requirement and Consumption 9.3.1 Impact on Various Energy Resources 9.4 Impact on Various State Power Generating Stations 9.4.1 Impact on Northern Region 9.4.2 Impact on Western Region 9.4.3 Impact on Southern Region 9.4.4 Impact on Eastern Region 9.5 Impact on North Eastern Region 9.5.1 Impact on All India Region 9.6 Conclusion References 10 Automated Navigation System with Indoor Assistance for Blind 10.1 Introduction 10.2 Related Work 10.3 System Description 10.4 Implementation 10.5 Conclusion References 11 Estimation of Quantity and Nutritional Information of Food Using Image Processing 11.1 Introduction 11.1.1 Purpose 11.1.2 Scope 11.1.3 Image-Based Estimation of Real Food Size for Accurate Food Calorie Estimation 11.1.4 CalorieCam 11.1.5 Weakly Supervised Segmentation-Based Calorie Estimation 11.1.6 ARDeep Calorie Cam 11.1.7 Depth Calorie Cam 11.1.8 Smartphone Applications for Promoting Healthy Diet and Nutrition 11.1.9 Object Detection via Region-Based Fully Convolutional Networks 11.1.10 Understanding of Object Detection Based on CNN Family and YOLO 11.1.11 YOLO (You Only Look Once)—Real-Time Object Detection for Real-Time Food Detection 11.1.12 Python Scripting Language 11.1.13 OpenCV 11.1.14 SQL Alchemy 11.1.15 Flask 11.1.16 Tkinter 11.1.17 Deep Learning-Based Food Calorie Estimation Method in Dietary Assessment 11.1.18 An Automatic Calorie Estimation System of Food Images on a Smartphone 11.2 System Analysis 11.2.1 Existing System 11.2.2 Limitations 11.2.3 Proposed System 11.2.4 Feasibility Study 11.2.5 Effort, Duration, and Cost Estimation using COCOMO 11.2.6 Hardware Requirements 11.2.7 Software Requirements 11.2.8 Software Requirements’ Specification Revision History 11.3 System Design 11.3.1 System Architecture 11.3.2 SQLite 11.3.3 Object Detection Module 11.3.4 Area Estimation Module 11.3.5 Height Estimation Module 11.3.6 Deployment Architecture 11.3.7 AmazonEC2 11.3.8 Nginx 11.3.9 Gunicorn3 11.3.10 Flask 11.4 Implementation 11.4.1 Object-Detection Module 11.4.2 Area-Estimation Module 11.4.3 Height Estimation Module 11.5 Testing 11.6 Screenshots 11.7 Conclusion References