دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [4 ed.] نویسندگان: John R. Reynolds, Barry C. Thompson, Terje A. Skotheim سری: Handbook of Conducting Polymers ISBN (شابک) : 9781138065697 ناشر: CRC Press سال نشر: 2019 تعداد صفحات: 668 [669] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 36 Mb
در صورت تبدیل فایل کتاب Conjugated Polymers: Perspective, Theory, and New Materials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پلیمرهای مزدوج: دیدگاه، نظریه و مواد جدید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب دیدگاهها، تئوری و مواد جدید درگیر در رسانای پلیمرها را پوشش میدهد. این مقاله در مورد شیمی پلیمرها و مواد، از جمله موضوعاتی مانند پلی استیلن ها، پلیمرهای نردبانی مزدوج، پلی تیوفن ها، پلی الکترولیت های مزدوج و پلیمرهای گیرنده دهنده بحث می کند.
This book covers perspectives, theory, and new materials involved in conducting polymers. It discusses polymer and materials chemistry, including such topics as polyacetylenes, conjugated ladder polymers, polythiophenes, conjugated polyelectrolytes, and donor acceptor polymers.
Cover Half Title Conjugated Polymers: Perspective, Theory, and New Materials Copyright Contents Authors Contributors 1. Early History of Conjugated Polymers: From Their Origins to the Handbook of Conducting Polymers Seth C. Rasmussen 1.1 Introduction 1.2 Basic Synthesis and Doping Processes of Conjugated Polymers 1.3 Polyaniline 1.3.1 Early Reports of the Oxidation of Aniline 1.3.2 Determination of the Structure of Aniline Oxidation Products 1.3.3 Buvet, Jozefowicz, and Conducting Polyaniline 1.4 Polypyrrole 1.4.1 Angeli and Pyrrole Black 1.4.2 Ciusa and ‘Graphite’ from Pyrrole 1.4.3 Weiss and Conducting Polypyrrole 1.4.4 Pyrrole Black at the University of Parma 1.4.5 Diaz and Electropolymerized Polypyrrole Films 1.5 Polyacetylene 1.5.1 Natta and the Polymerization of Acetylene 1.5.2 Tokyo Institute of Technology and Continued Studies of Polyacetylene 1.5.3 Shirakawa and Polyacetylene Films 1.5.4 Smith, Berets, and Doped Polyacetylene 1.5.5 MacDiarmid, Heeger, and Poly(sulfur nitride) 1.5.6 Doped Polyacetylene Films 1.6 Polythiophene 1.6.1 Yamamoto and Polythiophene via Catalytic Cross-Coupling 1.6.2 Lin and Related Catalytic Cross-Coupling Methods 1.6.3 Polythiophene via Electropolymerization 1.6.4 Polythiophenes via Chemical Oxidation 1.7 The Rise of Synthetic Metals and a Developing Field of Conductive Polymers 1.7.1 Synthetic Metals 1.7.2 Dedicated Literature References 2. Recent Advances in the Computational Characterization of π-Conjugated Organic Semiconductors Jean-Luc Brédas, Xiankai Chen, Thomas Körzdörfer, Hong Li, Chad Risko, Sean M. Ryno, and Tonghui Wang 2.1 Introduction 2.2 Density Functional Theory for Organic Electronics 2.2.1 The Electronic-Structure Method of Choice for Organic Electronic Materials 2.2.2 A Brief Introduction to DFT and TD-DFT 2.2.3 Challenges in DFT Applications and Recent Advances in Functional Development 2.2.3.1 Condensed Phases and the Problem of Dispersion Corrections in DFT 2.2.3.2 Self-Interaction Errors and Tuned Long-Range Corrected Hybrid Functionals 2.2.3.3 Charged Excitation Energies and the Physical Interpretation of Gaps in DFT 2.2.3.4 Optical Excitation Energies, Charge-Transfer Excitations, and Triplet States 2.3 Noncovalent Interactions and Polarization in the Condensed Phase 2.3.1 Noncovalent Interactions: Solid-State Packing, Miscibility, and Processing 2.3.2 Polarization and Site Energies in the Bulk and at Interfaces: Impact on Charged-State Characteristics 2.4 A Theoretical Description of Organic Emitters for Light-Emitting Diodes Exploiting Thermally Assisted Delayed Fluorescence 2.4.1 Theoretical Description of Reverse Intersystem Crossing 2.4.2 Relationships of the Spin-Orbit Couplings with the Excitation Characteristics 2.4.3 Role of Non-Adiabatic Coupling in the Reverse Intersystem Crossing Process 2.4.4 Novel Molecular-Design Strategies for TADF Emitters 2.5 Molecular Dynamics Description of Organic-OrganicInterfaces and Polymer Pure Phases 2.5.1 Interfaces Between Layers of Small Molecules: Interfacial Mixing 2.5.2 π-Conjugated Polymer Pure Phases: Main-Chain Conformation and Inter-Chain Packing 2.5.3 Polymer-Fullerene Packing and Interfaces in the Mixed Regions 2.6 Characterization of the Interfaces between an Organic Layer and a Metal or Conducting Oxide Surface 2.6.1 Description of the Change in Surface Workfunction upon Deposition of an Organic Layer 2.6.2 Brief Description of the Computational Methodology 2.6.3 Surface Defects 2.6.4 Charge-Transfer Characteristics for Donor/Acceptor Molecules Physisorbed on Metal-Oxide Surfaces 2.6.5 Characterization of the Binding Modes of the Surface Modifiers Acknowledgments References 3. Perspective on the Advancements in Conjugated Polymer Synthesis, Design, and Functionality over the Past Ten Years 3.1 Introduction to this Perspective 3.1.1 Polymer Structures 3.1.1.1 Polythiophene and Derivatives 3.1.1.2 Poly(arylene vinylenes) 3.1.1.3 Poly(arylene ethynylenes) 3.1.1.4 Narrow Bandgap Polymers 3.1.2 Polymer Synthesis 3.1.2.1 Transition Metal Catalyzed Polymerizations 3.1.2.2 Electrochemical Oxidative Polymerization 3.1.2.3 McMurry Polymerization 3.1.2.4 Knoevenagel Polycondensation 3.1.2.5 Gilch Polymerization 3.1.2.6 Wittig Type Polycondensations 3.2 Advancements in Conjugated Polymer Syntheses 3.2.1 Emerging Repeat Units 3.2.1.1 Amide and Imide Functionalized Repeat Units 3.2.1.2 Benzothiadiazole, Quinoxaline, and Analogs 3.2.1.3 Fused Donors 3.2.1.4 Heteroatom Modification 3.2.2 New Synthetic Strategies in Conjugated Polymer Chemistry 3.2.2.1 Polymerizations via C–H Activation 3.2.2.2 GRIM/Chain Transfer Polymerization (CTP) Synthetic Strategies 3.2.2.3 Continuous Flow Synthesis 3.2.2.4 Click-Chemistry and Multi-Component Reactions 3.2.2.5 Molecular Weight and Dispersity Effects 3.2.3 Structure Property Modification of Conjugated Polymers 3.2.3.1 Random and Block Copolymers 3.2.3.2 Side Chain Engineering 3.2.3.3 n-Type Conjugated Polymers 3.2.3.4 Metallopolymers 3.2.3.5 Conjugated Porous Polymers 3.3 Future Direction and Outlook 3.3.1 Efficient Monomer and Polymer Synthesis 3.3.2 Polymer Properties and Applications Acknowledgments References 4. Advances in Discrete Length and Fused Conjugated Oligomers Shanshan Chen, So-Huei Kang, Sang Myeon Lee, Tanya Kumari, and Changduk Yang 4.1 Introduction 4.2 Oligothiophenes 4.2.1 End-group Modification 4.2.2 Conjugation Length Extension 4.3 Cyclopentadithiophene Derivatives 4.3.1 Heteroatom Modification 4.3.2 Regiochemistry Studies 4.3.3 Conjugation Length Extension 4.3.4 End-group Modification 4.4 Benzodithiophene Derivatives 4.4.1 Conjugated Length Extension 4.4.2 Core Unit Modification 4.4.3 End-Group Modification 4.5 Indacenodithiophene Derivatives 4.5.1 Core Unit or π-Bridge Modification 4.5.2 Conjugation Length Extension 4.5.3 End-Group Modification 4.6 Rylene Diimide Derivatives 4.6.1 Conjugation Length Extension 4.7 Others 4.8 Conclusion Acknowledgments References 5. Direct (Hetero)Arylation Polymerization for the Preparation of Conjugated Polymers J. Terence Blaskovits and Mario Leclerc 5.1 Introduction 5.2 Direct C–H Activation and Arylation of Small Molecules 5.2.1 History and Development 5.2.2 Proposed Mechanisms and Implications 5.3 Direct Arylation Applied to Polymers 5.3.1 Early Examples 5.3.2 Synthetic Considerations of DHAP 5.4 Defects in DHAP-Prepared Polymers 5.4.1 Regioregularity 5.4.2 Homocoupling 5.4.3 β-Defects 5.5 Considerations for a Successful Polymerization 5.5.1 Optimizing Reaction Conditions 5.5.2 Solvent 5.5.3 Ligand 5.5.4 Catalyst 5.5.5 Base, Acid, and Other Additives 5.5.6 Heating Source 5.6 Conclusions and Outlook References 6. Living Polymerizations of π-Conjugated Semiconductors 6.1 Introduction 6.2 Poly(3-hexylthiophene) 6.3 Kumada Catalyst-Transfer Polymerization (KCTP) 6.3.1 Mechanistic Details of KCTP 6.3.2 External Initiation of KCTP 6.3.3 Termination and Endcapping in KCTP 6.3.4 Modulation of Electronic and Steric Effects in KCTP 6.4 Synthesis of Semiconducting π-Conjugated Polymers 6.4.1 Other Semiconducting Scaffolds 6.4.2 Block Copolymers 6.4.3 Alternating Copolymers 6.4.4 Synthesis of Advanced Topologies 6.5 Conclusions References 7. Controlled Synthesis of Polyfurans, Polyselenophenes, and Polytellurophenes Shuyang Ye, Emily L. Kynaston, and Dwight S. Seferos 7.1 Introduction 7.2 Synthesis of Furan, Selenophene, and Tellurophene Monomers 7.3 Furan, Selenophene, and Tellurophene Homopolymers 7.3.1 Preparation of Polyfurans 7.3.2 Preparation of Polyselenophenes 7.3.3 Preparation of Polytellurophenes 7.4 Properties and Applications of O, Se-, and Te- Polymers 7.4.1 Structure and Rigidity 7.4.2 Optoelectronic Properties 7.5 Furan, Selenophene, and Tellurophene Copolymers and Self-Assembly Behavior 7.6 Summary and Outlook References 8. Donor-Acceptor Polymers for Organic Photovoltaics Desta Gedefaw and Mats R. Andersson 8.1 Introduction 8.2 Donor-Acceptor Conjugated Polymers 8.2.1 Fluorene, Silafluorene, Carbazole, and Cyclopentadithiophene-Containing Donor-Acceptor Polymers 8.2.2 Thiophene and Derivatives as a Donor Unit in Donor-Acceptor Polymers 8.2.2.1 Thiophene/Thienothiophene/Selenophene-Quinoxaline 8.2.2.2 Thiophene-Isoindigo Donor-Acceptor Polymers 8.2.3 Benzodithiophene as a Donor Unit for the Synthesis of Donor-Acceptor Polymers 8.2.3.1 Benzodithiophene-Thienothiophene-Based Donor-Acceptor Polymers 8.2.3.2 Benzodithiophene-TPD-Based Donor-Acceptor Polymers 8.2.3.3 BDT-Quinoxaline-Based Donor-Acceptor Polymers 8.2.3.4 BDT with Benzodithiophene-dione 8.2.3.6 BDT-triazole Polymers 8.2.4 Indacenodithiophene and its Derivatives as a Donor Unit in the Construction of Donor-Acceptor Polymers 8.2.4.1 Functionalization of the Bridging Atom 8.2.4.2 Further Extension of the Fused System 8.2.5 Summary and Outlook Acknowledgments References 9. Conjugated Polymers for n- and p-Type Charge Transport Zachary S. Parr, Zhijie Guo, and Christian B. Nielsen 9.1 Introduction 9.2 p-Type Charge Transport 9.2.1 Polythiophene-Based Systems 9.2.2 Donor-Acceptor Systems 9.2.2.1 CPDT-Based Systems 9.2.2.2 IDT-Based Systems 9.2.2.3 Diketopyrrolopyrrole-Based Polymers 9.2.2.4 Isoindigo-Based Polymers 9.2.2.5 Other Donor Acceptor Systems 9.2.3 Molecule:Polymer Blends 9.3 n-Type Charge Transport 9.3.1 Indigo- and Isoindigo-Based Systems 9.3.2 Diketopyrrolopyrrole-Based Systems 9.3.3 Rylene Diimide-Based Systems 9.3.4 Other Structural Systems 9.4 Ambipolar Charge Transport 9.5 Conclusions and Outlook References 10. Conjugated Block Copolymers: Synthesis, Self-Assembly, and Device Applications Jessica Shaw and Malika Jeffries-EL 10.1 Introduction 10.2 Synthesis of Conjugated Block Copolymers 10.3 Self-Assembly of Conjugated Block Copolymers 10.4 Device Applications 10.5 Conclusions and Future Perspective References 11. Metal-Containing Conjugated Polymers Christopher M. Brown and Michael O. Wolf 11.1 General Introduction 11.2 Group 8 – Fe, Ru, Os 11.2.1 Introduction 11.2.2 Type I 11.2.3 Type III 11.3 Group 9 – Co, Rh, Ir 11.3.1 Introduction 11.3.2 Type I 11.3.3 Type II 11.3.4 Type III 11.4 Group 10 – Ni, Pd, Pt 11.4.1 Introduction 11.4.2 Type II 11.4.3 Type III 11.5 Group 11 – Coinage Metals 11.5.1 Introduction 11.5.2 Type I 11.5.3 Type II 11.5.4 Type III 11.6 Lanthanides 11.6.1 Introduction 11.6.2 Type I 11.6.3 Type II 11.6.4 Type III 11.7 Other Metals/Mixed-Metal Systems 11.7.1 Introduction 11.7.2 Rhenium 11.7.3 Zinc 11.7.4 Mixed Zn-Ln Systems 11.8 Conclusions Abbreviations References 12. Recent Progress in the Development of Optoelectronic Materials Based on Group 13 Element-containing Conjugated Polymers Shunichiro Ito, Masayuki Gon, Kazuo Tanaka, and Yoshiki Chujo 12.1 Introduction 12.2 Boron-Containing π-Conjugated Polymers 12.2.1 Overview 12.2.2 π-Conjugated Polymers Containing Three-Coordinate Boron 12.2.2.1 Hydroboration Polymerization 12.2.2.2 Metal–Boron Exchange Polymerization 12.2.2.3 Transition Metal-Catalyzed Coupling 12.2.2.4 π-Conjugated Polymers Containing B–N Units 12.2.3 π-Conjugated Polymers Containing Four-Coordinate Boron 12.2.3.1 BODIPY and Aza-BODIPY 12.2.3.2 Boron Diketonates, Ketiminates, and Diketiminates 12.2.4 π-Conjugated Polymers Containing Carboranes 12.3 Aluminum-Containing π-Conjugated Polymers 12.3.1 Overview 12.3.2 Aluminum Quinolinolate Complex 12.4 Gallium-Containing π-Conjugated Polymers 12.4.1 Overview 12.4.2 Organogallium Compounds Stabilized by Supporting Ligand 12.4.3 Gallium Complexes Stabilized by π-Conjugated Supporting Ligand 12.5 Conclusion References 13. Multifunctional Conjugated Polymers: Helically Assembled Spherulites, Photo-Controllable Illuminants, and Helical Graphites Kazuo Akagi 13.1 Introduction 13.1.1 Conjugated Polymers 13.1.2 Helical π-Conjugated Polymers 13.1.3 Polymer Spherulites 13.1.4 Dynamic Control of Luminescence 13.1.5 Polymer Nanospheres 13.1.6 Chiral Liquid Crystal Field 13.1.7 Carbon and Graphitic Materials 13.2 Polymer Spherulites Consisting of Hierarchical Helical Assemblies 13.2.1 Cationic Conjugated Polymer and Anionic Chiral Compound 13.2.2 Circular Polarized Luminescence 13.2.3 Stoichiometry of Assembly 13.2.4 Spheres Consisting of Polymer Assemblies 13.3 Photochemically Color-Tunable Fluorescence Illuminants Consisting of Conjugated Polymer Nanospheres 13.3.1 Photoswitching of Emission and Quenching 13.3.2 Photoresponsive Polymer Nanospheres 13.3.3 Photoswitching Between White Fluorescence and Quenching 13.3.4 Photoswitching between White and RGB Fluorescence 13.4 Helical Carbon and Graphites Prepared from Helical Conjugated Polymers 13.4.1 Iodine-Doped Helical Polyacetylene 13.4.2 Morphologies of Helical Carbon Films 13.4.3 XRD Intensity Curves and Raman Scattering Spectra 13.4.4 Mechanism of Morphology-Retaining Carbonization 13.4.5 Graphitization of Helical Carbon 13.5 Conclusion Acknowledgments References 14. Conjugated Polyelectrolytes Designed for Biological Applications Pradeepkumar Jagadesan, Yun Huang, and Kirk S. Schanze 14.1 Introduction—Structure and Properties of Conjugated Polyelectrolytes 14.2 Classifications of Conjugated Polyelectrolytes 14.2.1 Cationic Conjugated Polyelectrolytes 14.2.2 Anionic Conjugated Polyelectrolytes 14.2.3 Zwitterionic Conjugated Polymers 14.3 Optical Properties of Conjugated Polyelectrolytes 14.3.1 Background and History of Fluorescence Sensing with Conjugated Polyelectrolytes 14.3.2 Aggregation Based Fluorescence Sensing 14.4 Biosensing with Conjugated Polyelectrolytes 14.4.2 DNA Sensing with Conjugated Polyelectrolytes 14.5 Selective Imaging of Microbial Pathogens with Conjugated Polyelectrolytes 14.6 Application of Machine Learning to Nonspecific Conjugated Polyelectrolyte Sensors 14.7 Cationic Conjugated Polyelectrolytes as Antimicrobials 14.8 Application of Conjugated Polyelectrolytes in Mammalian Cell Investigations 14.8.1 Cell Imaging Studies—Penetration into Mammalian Cells 14.8.2 Localization of Conjugated Polyelectrolytes in Lysosomes and pH-triggered Escape 14.8.3 Gene Transfection Using Conjugated Polyelectrolytes 14.9 Summary, Conclusion, and Perspectives Acknowledgments References 15. Oxidative Chemical Vapor Deposition for Conjugated Polymers: Theory and Applications Karen K. Gleason and Xiaoxue Wang 15.1 Introduction 15.2 Chemistry of Film Growth and Grafting 15.3 Reactors and Processing 15.4 Polymers and their Applications 15.5 The Properties of oCVD PEDOT and Its Applications 15.5.1 Optimization of Electrical Conductivity 15.5.2 Optical Properties 15.5.3 Scale-up and Applications of oCVD PEDOT 15.6 The Properties and Applications of oCVD Copolymers with EDOT 15.7 The Properties and Applications of other oCVD-conjugated Polymers 15.7.1 Polyaniline (PANI) 15.7.2 Polythiophene 15.7.3 Low Band Gap Semiconducting Polymers Polyisothianaphthene (PITN) and Polyselenophene (pSe) 15.7.4 Other Conjugated Polymer Films Deposited using oCVD 15.8 Conclusion and Outlook Acknowledgments References 16. Flow Synthesis: A Better Way to Conjugated Polymers? James H. Bannock, Martin J. Heeney, and John C. de Mello 16.1 Introduction to Flow Chemistry 16.1.1 Flow reactors 16.1.2 Automation 16.1.3 Translating Chemical Reactions from Flash to Flow 16.1.4 Injection Valves 16.2 Flow Synthesis of Conjugated Polymers 16.2.1 Single-Phase Synthesis of Conjugated Polymers 16.2.2 Droplet Synthesis 16.3 Challenges for the Future 16.4 Conclusion References Index