ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Conjugated Polymers: Perspective, Theory, and New Materials

دانلود کتاب پلیمرهای مزدوج: دیدگاه، نظریه و مواد جدید

Conjugated Polymers: Perspective, Theory, and New Materials

مشخصات کتاب

Conjugated Polymers: Perspective, Theory, and New Materials

ویرایش: [4 ed.] 
نویسندگان: , ,   
سری: Handbook of Conducting Polymers 
ISBN (شابک) : 9781138065697 
ناشر: CRC Press 
سال نشر: 2019 
تعداد صفحات: 668
[669] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 36 Mb 

قیمت کتاب (تومان) : 33,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Conjugated Polymers: Perspective, Theory, and New Materials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پلیمرهای مزدوج: دیدگاه، نظریه و مواد جدید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پلیمرهای مزدوج: دیدگاه، نظریه و مواد جدید

این کتاب دیدگاه‌ها، تئوری و مواد جدید درگیر در رسانای پلیمرها را پوشش می‌دهد. این مقاله در مورد شیمی پلیمرها و مواد، از جمله موضوعاتی مانند پلی استیلن ها، پلیمرهای نردبانی مزدوج، پلی تیوفن ها، پلی الکترولیت های مزدوج و پلیمرهای گیرنده دهنده بحث می کند.


توضیحاتی درمورد کتاب به خارجی

This book covers perspectives, theory, and new materials involved in conducting polymers. It discusses polymer and materials chemistry, including such topics as polyacetylenes, conjugated ladder polymers, polythiophenes, conjugated polyelectrolytes, and donor acceptor polymers.



فهرست مطالب

Cover
Half Title
Conjugated Polymers: Perspective, Theory, and New Materials
Copyright
Contents
Authors
Contributors
1. Early History of Conjugated Polymers: From Their Origins to the Handbook of Conducting Polymers
	Seth C. Rasmussen
	1.1 Introduction
	1.2 Basic Synthesis and Doping Processes of Conjugated Polymers
	1.3 Polyaniline
		1.3.1 Early Reports of the Oxidation of Aniline
		1.3.2 Determination of the Structure of Aniline Oxidation Products
		1.3.3 Buvet, Jozefowicz, and Conducting Polyaniline
	1.4 Polypyrrole
		1.4.1 Angeli and Pyrrole Black
		1.4.2 Ciusa and ‘Graphite’ from Pyrrole
		1.4.3 Weiss and Conducting Polypyrrole
		1.4.4 Pyrrole Black at the University of Parma
		1.4.5 Diaz and Electropolymerized Polypyrrole Films
	1.5 Polyacetylene
		1.5.1 Natta and the Polymerization of Acetylene
		1.5.2 Tokyo Institute of Technology and Continued Studies of Polyacetylene
		1.5.3 Shirakawa and Polyacetylene Films
		1.5.4 Smith, Berets, and Doped Polyacetylene
		1.5.5 MacDiarmid, Heeger, and Poly(sulfur nitride)
		1.5.6 Doped Polyacetylene Films
	1.6 Polythiophene
		1.6.1 Yamamoto and Polythiophene via Catalytic Cross-Coupling
		1.6.2 Lin and Related Catalytic Cross-Coupling Methods
		1.6.3 Polythiophene via Electropolymerization
		1.6.4 Polythiophenes via Chemical Oxidation
	1.7 The Rise of Synthetic Metals and a Developing Field of Conductive Polymers
		1.7.1 Synthetic Metals
		1.7.2 Dedicated Literature
	References
2. Recent Advances in the Computational Characterization of π-Conjugated Organic Semiconductors
	Jean-Luc Brédas, Xiankai Chen, Thomas Körzdörfer, Hong Li, Chad Risko, Sean M. Ryno, and Tonghui Wang
	2.1 Introduction
	2.2 Density Functional Theory for Organic Electronics
		2.2.1 The Electronic-Structure Method of Choice for Organic Electronic Materials
		2.2.2 A Brief Introduction to DFT and TD-DFT
		2.2.3 Challenges in DFT Applications and Recent Advances in Functional Development
			2.2.3.1 Condensed Phases and the Problem of Dispersion Corrections in DFT
			2.2.3.2 Self-Interaction Errors and Tuned Long-Range Corrected Hybrid Functionals
			2.2.3.3 Charged Excitation Energies and the Physical Interpretation of Gaps in DFT
			2.2.3.4 Optical Excitation Energies, Charge-Transfer Excitations, and Triplet States
	2.3 Noncovalent Interactions and Polarization in the Condensed Phase
		2.3.1 Noncovalent Interactions: Solid-State Packing, Miscibility, and Processing
		2.3.2 Polarization and Site Energies in the Bulk and at Interfaces: Impact on Charged-State Characteristics
	2.4 A Theoretical Description of Organic Emitters for Light-Emitting Diodes Exploiting Thermally Assisted Delayed Fluorescence
		2.4.1 Theoretical Description of Reverse Intersystem Crossing
		2.4.2 Relationships of the Spin-Orbit Couplings with the Excitation Characteristics
		2.4.3 Role of Non-Adiabatic Coupling in the Reverse Intersystem Crossing Process
		2.4.4 Novel Molecular-Design Strategies for TADF Emitters
	2.5 Molecular Dynamics Description of Organic-OrganicInterfaces and Polymer Pure Phases
		2.5.1 Interfaces Between Layers of Small Molecules: Interfacial Mixing
		2.5.2 π-Conjugated Polymer Pure Phases: Main-Chain Conformation and Inter-Chain Packing
		2.5.3 Polymer-Fullerene Packing and Interfaces in the Mixed Regions
	2.6 Characterization of the Interfaces between an Organic Layer and a Metal or Conducting Oxide Surface
		2.6.1 Description of the Change in Surface Workfunction upon Deposition of an Organic Layer
		2.6.2 Brief Description of the Computational Methodology
		2.6.3 Surface Defects
		2.6.4 Charge-Transfer Characteristics for Donor/Acceptor Molecules Physisorbed on Metal-Oxide Surfaces
		2.6.5 Characterization of the Binding Modes of the Surface Modifiers
	Acknowledgments
	References
3. Perspective on the Advancements in Conjugated Polymer Synthesis, Design, and Functionality over the Past Ten Years
	3.1 Introduction to this Perspective
		3.1.1 Polymer Structures
			3.1.1.1 Polythiophene and Derivatives
			3.1.1.2 Poly(arylene vinylenes)
			3.1.1.3 Poly(arylene ethynylenes)
			3.1.1.4 Narrow Bandgap Polymers
		3.1.2 Polymer Synthesis
			3.1.2.1 Transition Metal Catalyzed Polymerizations
			3.1.2.2 Electrochemical Oxidative Polymerization
			3.1.2.3 McMurry Polymerization
			3.1.2.4 Knoevenagel Polycondensation
			3.1.2.5 Gilch Polymerization
			3.1.2.6 Wittig Type Polycondensations
	3.2 Advancements in Conjugated Polymer Syntheses
		3.2.1 Emerging Repeat Units
			3.2.1.1 Amide and Imide Functionalized Repeat Units
			3.2.1.2 Benzothiadiazole, Quinoxaline, and Analogs
			3.2.1.3 Fused Donors
			3.2.1.4 Heteroatom Modification
		3.2.2 New Synthetic Strategies in Conjugated Polymer Chemistry
			3.2.2.1 Polymerizations via C–H Activation
			3.2.2.2 GRIM/Chain Transfer Polymerization (CTP) Synthetic Strategies
			3.2.2.3 Continuous Flow Synthesis
			3.2.2.4 Click-Chemistry and Multi-Component Reactions
			3.2.2.5 Molecular Weight and Dispersity Effects
		3.2.3 Structure Property Modification of Conjugated Polymers
			3.2.3.1 Random and Block Copolymers
			3.2.3.2 Side Chain Engineering
			3.2.3.3 n-Type Conjugated Polymers
			3.2.3.4 Metallopolymers
			3.2.3.5 Conjugated Porous Polymers
	3.3 Future Direction and Outlook
		3.3.1 Efficient Monomer and Polymer Synthesis
		3.3.2 Polymer Properties and Applications
	Acknowledgments
	References
4. Advances in Discrete Length and Fused Conjugated Oligomers
	Shanshan Chen, So-Huei Kang, Sang Myeon Lee, Tanya Kumari, and Changduk Yang
	4.1 Introduction
	4.2 Oligothiophenes
		4.2.1 End-group Modification
		4.2.2 Conjugation Length Extension
	4.3 Cyclopentadithiophene Derivatives
		4.3.1 Heteroatom Modification
		4.3.2 Regiochemistry Studies
		4.3.3 Conjugation Length Extension
		4.3.4 End-group Modification
	4.4 Benzodithiophene Derivatives
		4.4.1 Conjugated Length Extension
		4.4.2 Core Unit Modification
		4.4.3 End-Group Modification
	4.5 Indacenodithiophene Derivatives
		4.5.1 Core Unit or π-Bridge Modification
		4.5.2 Conjugation Length Extension
		4.5.3 End-Group Modification
	4.6 Rylene Diimide Derivatives
		4.6.1 Conjugation Length Extension
	4.7 Others
	4.8 Conclusion
	Acknowledgments
	References
5. Direct (Hetero)Arylation Polymerization for the Preparation of Conjugated Polymers
	J. Terence Blaskovits and Mario Leclerc
	5.1 Introduction
	5.2 Direct C–H Activation and Arylation of Small Molecules
		5.2.1 History and Development
		5.2.2 Proposed Mechanisms and Implications
	5.3 Direct Arylation Applied to Polymers
		5.3.1 Early Examples
		5.3.2 Synthetic Considerations of DHAP
	5.4 Defects in DHAP-Prepared Polymers
		5.4.1 Regioregularity
		5.4.2 Homocoupling
		5.4.3 β-Defects
	5.5 Considerations for a Successful Polymerization
		5.5.1 Optimizing Reaction Conditions
		5.5.2 Solvent
		5.5.3 Ligand
		5.5.4 Catalyst
		5.5.5 Base, Acid, and Other Additives
		5.5.6 Heating Source
	5.6 Conclusions and Outlook
	References
6. Living Polymerizations of π-Conjugated Semiconductors
	6.1 Introduction
	6.2 Poly(3-hexylthiophene)
	6.3 Kumada Catalyst-Transfer Polymerization (KCTP)
		6.3.1 Mechanistic Details of KCTP
		6.3.2 External Initiation of KCTP
		6.3.3 Termination and Endcapping in KCTP
		6.3.4 Modulation of Electronic and Steric Effects in KCTP
	6.4 Synthesis of Semiconducting π-Conjugated Polymers
		6.4.1 Other Semiconducting Scaffolds
		6.4.2 Block Copolymers
		6.4.3 Alternating Copolymers
		6.4.4 Synthesis of Advanced Topologies
	6.5 Conclusions
	References
7. Controlled Synthesis of Polyfurans, Polyselenophenes, and Polytellurophenes
	Shuyang Ye, Emily L. Kynaston, and Dwight S. Seferos
	7.1 Introduction
	7.2 Synthesis of Furan, Selenophene, and Tellurophene Monomers
	7.3 Furan, Selenophene, and Tellurophene Homopolymers
		7.3.1 Preparation of Polyfurans
		7.3.2 Preparation of Polyselenophenes
		7.3.3 Preparation of Polytellurophenes
	7.4 Properties and Applications of O, Se-, and Te- Polymers
		7.4.1 Structure and Rigidity
		7.4.2 Optoelectronic Properties
	7.5 Furan, Selenophene, and Tellurophene Copolymers and Self-Assembly Behavior
	7.6 Summary and Outlook
	References
8. Donor-Acceptor Polymers for Organic Photovoltaics
	Desta Gedefaw and Mats R. Andersson
	8.1 Introduction
	8.2 Donor-Acceptor Conjugated Polymers
		8.2.1 Fluorene, Silafluorene, Carbazole, and Cyclopentadithiophene-Containing Donor-Acceptor Polymers
		8.2.2 Thiophene and Derivatives as a Donor Unit in Donor-Acceptor Polymers
			8.2.2.1 Thiophene​/Thie​nothi​ophen​e/Sel​enoph​ene-Q​uinox​aline​
			8.2.2.2 Thiophene-Isoindigo Donor-Acceptor Polymers
		8.2.3 Benzodithiophene as a Donor Unit for the Synthesis of Donor-Acceptor Polymers
			8.2.3.1 Benzodithiophene-Thienothiophene-Based Donor-Acceptor Polymers
			8.2.3.2 Benzodithiophene-TPD-Based Donor-Acceptor Polymers
			8.2.3.3 BDT-Quinoxaline-Based Donor-Acceptor Polymers
			8.2.3.4 BDT with Benzodithiophene-dione
			8.2.3.6 BDT-triazole Polymers
		8.2.4 Indacenodithiophene and its Derivatives as a Donor Unit in the Construction of Donor-Acceptor Polymers
			8.2.4.1 Functionalization of the Bridging Atom
			8.2.4.2 Further Extension of the Fused System
		8.2.5 Summary and Outlook
	Acknowledgments
	References
9. Conjugated Polymers for n- and p-Type Charge Transport
	Zachary S. Parr, Zhijie Guo, and Christian B. Nielsen
	9.1 Introduction
	9.2 p-Type Charge Transport
		9.2.1 Polythiophene-Based Systems
		9.2.2 Donor-Acceptor Systems
			9.2.2.1 CPDT-Based Systems
			9.2.2.2 IDT-Based Systems
			9.2.2.3 Diketopyrrolopyrrole-Based Polymers
			9.2.2.4 Isoindigo-Based Polymers
			9.2.2.5 Other Donor Acceptor Systems
		9.2.3 Molecule:Polymer Blends
	9.3 n-Type Charge Transport
		9.3.1 Indigo- and Isoindigo-Based Systems
		9.3.2 Diketopyrrolopyrrole-Based Systems
		9.3.3 Rylene Diimide-Based Systems
		9.3.4 Other Structural Systems
	9.4 Ambipolar Charge Transport
	9.5 Conclusions and Outlook
	References
10. Conjugated Block Copolymers: Synthesis, Self-Assembly, and Device Applications
	Jessica Shaw and Malika Jeffries-EL
	10.1 Introduction
	10.2 Synthesis of Conjugated Block Copolymers
	10.3 Self-Assembly of Conjugated Block Copolymers
	10.4 Device Applications
	10.5 Conclusions and Future Perspective
	References
11. Metal-Containing Conjugated Polymers
	Christopher M. Brown and Michael O. Wolf
	11.1 General Introduction
	11.2 Group 8 – Fe, Ru, Os
		11.2.1 Introduction
		11.2.2 Type I
		11.2.3 Type III
	11.3 Group 9 – Co, Rh, Ir
		11.3.1 Introduction
		11.3.2 Type I
		11.3.3 Type II
		11.3.4 Type III
	11.4 Group 10 – Ni, Pd, Pt
		11.4.1 Introduction
		11.4.2 Type II
		11.4.3 Type III
	11.5 Group 11 – Coinage Metals
		11.5.1 Introduction
		11.5.2 Type I
		11.5.3 Type II
		11.5.4 Type III
	11.6 Lanthanides
		11.6.1 Introduction
		11.6.2 Type I
		11.6.3 Type II
		11.6.4 Type III
	11.7 Other Metals/Mixed-Metal Systems
		11.7.1 Introduction
		11.7.2 Rhenium
		11.7.3 Zinc
		11.7.4 Mixed Zn-Ln Systems
	11.8 Conclusions
	Abbreviations
	References
12. Recent Progress in the Development of Optoelectronic Materials Based on Group 13 Element-containing Conjugated Polymers
	Shunichiro Ito, Masayuki Gon, Kazuo Tanaka, and Yoshiki Chujo
	12.1 Introduction
	12.2 Boron-Containing π-Conjugated Polymers
		12.2.1 Overview
		12.2.2 π-Conjugated Polymers Containing Three-Coordinate Boron
			12.2.2.1 Hydroboration Polymerization
			12.2.2.2 Metal–Boron Exchange Polymerization
			12.2.2.3 Transition Metal-Catalyzed Coupling
			12.2.2.4 π-Conjugated Polymers Containing B–N Units
		12.2.3 π-Conjugated Polymers Containing Four-Coordinate Boron
			12.2.3.1 BODIPY and Aza-BODIPY
			12.2.3.2 Boron Diketonates, Ketiminates, and Diketiminates
		12.2.4 π-Conjugated Polymers Containing Carboranes
	12.3 Aluminum-Containing π-Conjugated Polymers
		12.3.1 Overview
		12.3.2 Aluminum Quinolinolate Complex
	12.4 Gallium-Containing π-Conjugated Polymers
		12.4.1 Overview
		12.4.2 Organogallium Compounds Stabilized by Supporting Ligand
		12.4.3 Gallium Complexes Stabilized by π-Conjugated Supporting Ligand
	12.5 Conclusion
	References
13. Multifunctional Conjugated Polymers: Helically Assembled Spherulites, Photo-Controllable Illuminants, and Helical Graphites
	Kazuo Akagi
	13.1 Introduction
		13.1.1 Conjugated Polymers
		13.1.2 Helical π-Conjugated Polymers
		13.1.3 Polymer Spherulites
		13.1.4 Dynamic Control of Luminescence
		13.1.5 Polymer Nanospheres
		13.1.6 Chiral Liquid Crystal Field
		13.1.7 Carbon and Graphitic Materials
	13.2 Polymer Spherulites Consisting of Hierarchical Helical Assemblies
		13.2.1 Cationic Conjugated Polymer and Anionic Chiral Compound
		13.2.2 Circular Polarized Luminescence
		13.2.3 Stoichiometry of Assembly
		13.2.4 Spheres Consisting of Polymer Assemblies
	13.3 Photochemically Color-Tunable Fluorescence Illuminants Consisting of Conjugated Polymer Nanospheres
		13.3.1 Photoswitching of Emission and Quenching
		13.3.2 Photoresponsive Polymer Nanospheres
		13.3.3 Photoswitching Between White Fluorescence and Quenching
		13.3.4 Photoswitching between White and RGB Fluorescence
	13.4 Helical Carbon and Graphites Prepared from Helical Conjugated Polymers
		13.4.1 Iodine-Doped Helical Polyacetylene
		13.4.2 Morphologies of Helical Carbon Films
		13.4.3 XRD Intensity Curves and Raman Scattering Spectra
		13.4.4 Mechanism of Morphology-Retaining Carbonization
		13.4.5 Graphitization of Helical Carbon
	13.5 Conclusion
	Acknowledgments
	References
14. Conjugated Polyelectrolytes Designed for Biological Applications
	Pradeepkumar Jagadesan, Yun Huang, and Kirk S. Schanze
	14.1 Introduction—Structure and Properties of Conjugated Polyelectrolytes
	14.2 Classifications of Conjugated Polyelectrolytes
		14.2.1 Cationic Conjugated Polyelectrolytes
		14.2.2 Anionic Conjugated Polyelectrolytes
		14.2.3 Zwitterionic Conjugated Polymers
	14.3 Optical Properties of Conjugated Polyelectrolytes
		14.3.1 Background and History of Fluorescence Sensing with Conjugated Polyelectrolytes
		14.3.2 Aggregation Based Fluorescence Sensing
	14.4 Biosensing with Conjugated Polyelectrolytes
		14.4.2 DNA Sensing with Conjugated Polyelectrolytes
	14.5 Selective Imaging of Microbial Pathogens with Conjugated Polyelectrolytes
	14.6 Application of Machine Learning to Nonspecific Conjugated Polyelectrolyte Sensors
	14.7 Cationic Conjugated Polyelectrolytes as Antimicrobials
	14.8 Application of Conjugated Polyelectrolytes in Mammalian Cell Investigations
		14.8.1 Cell Imaging Studies—Penetration into Mammalian Cells
		14.8.2 Localization of Conjugated Polyelectrolytes in Lysosomes and pH-triggered Escape
		14.8.3 Gene Transfection Using Conjugated Polyelectrolytes
	14.9 Summary, Conclusion, and Perspectives
	Acknowledgments
	References
15. Oxidative Chemical Vapor Deposition for Conjugated Polymers: Theory and Applications
	Karen K. Gleason and Xiaoxue Wang
	15.1 Introduction
	15.2 Chemistry of Film Growth and Grafting
	15.3 Reactors and Processing
	15.4 Polymers and their Applications
	15.5 The Properties of oCVD PEDOT and Its Applications
		15.5.1 Optimization of Electrical Conductivity
		15.5.2 Optical Properties
		15.5.3 Scale-up and Applications of oCVD PEDOT
	15.6 The Properties and Applications of oCVD Copolymers with EDOT
	15.7 The Properties and Applications of other oCVD-conjugated Polymers
		15.7.1 Polyaniline (PANI)
		15.7.2 Polythiophene
		15.7.3 Low Band Gap Semiconducting Polymers Polyisothianaphthene (PITN) and Polyselenophene (pSe)
		15.7.4 Other Conjugated Polymer Films Deposited using oCVD
	15.8 Conclusion and Outlook
	Acknowledgments
	References
16. Flow Synthesis: A Better Way to Conjugated Polymers?
	James H. Bannock, Martin J. Heeney, and John C. de Mello
	16.1 Introduction to Flow Chemistry
		16.1.1 Flow reactors
		16.1.2 Automation
		16.1.3 Translating Chemical Reactions from Flash to Flow
		16.1.4 Injection Valves
	16.2 Flow Synthesis of Conjugated Polymers
		16.2.1 Single-Phase Synthesis of Conjugated Polymers
		16.2.2 Droplet Synthesis
	16.3 Challenges for the Future
	16.4 Conclusion
	References
Index




نظرات کاربران