دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2020 نویسندگان: Jonas Larson, Erik Sjöqvist, Patrik Öhberg سری: Lecture Notes in Physics (965) (Book 965) ISBN (شابک) : 3030348814, 9783030348816 ناشر: Springer سال نشر: 2020 تعداد صفحات: 168 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 3 مگابایت
در صورت تبدیل فایل کتاب Conical Intersections in Physics: An Introduction to Synthetic Gauge Theories (Lecture Notes in Physics (965)) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تقاطع های مخروطی در فیزیک: مقدمه ای بر نظریه های سنج مصنوعی (یادداشت های سخنرانی در فیزیک (965)) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
This concise book introduces and discusses the basic theory of conical intersections with applications in atomic, molecular and condensed matter physics.
Conical intersections are linked to the energy of quantum systems. They can occur in any physical system characterized by both slow and fast degrees of freedom - such as e.g. the fast electrons and slow nuclei of a vibrating and rotating molecule - and are important when studying the evolution of quantum systems controlled by classical parameters. Furthermore, they play a relevant role for understanding the topological properties of condensed matter systems.
Conical intersections are associated with many interesting features, such as a breakdown of the Born-Oppenheimer approximation and the appearance of nontrivial artificial gauge structures, similar to the Aharonov-Bohm effect.
Some applications presented in this book include
- Molecular Systems: some molecules in nonlinear nuclear configurations undergo Jahn-Teller distortions under which the molecule lower their symmetry if the electronic states belong to a degenerate irreducible representation of the molecular point group.
- Solid State Physics: different types of Berry phases associated with conical intersections can be used to detect topologically nontrivial states of matter, such as topological insulators, Weyl semi-metals, as well as Majorana fermions in superconductors.
- Cold Atoms: the motion of cold atoms in slowly varying inhomogeneous laser fields is governed by artificial gauge fields that arise when averaging over the fast internal degrees of freedom of the atoms. These gauge fields can be Abelian or non-Abelian, which opens up the possibility to create analogs to various relativistic effects at low speed.
Preface Acknowledgements Contents 1 Introduction References 2 Theory of Adiabatic Evolution 2.1 Introduction 2.2 Adiabatic Time-Evolution 2.2.1 Adiabatic Theorem 2.2.2 Adiabatic Approximation 2.2.3 The Marzlin–Sanders Paradox 2.2.4 The Importance of the Energy Gap: Local Adiabatic Quantum Search 2.3 Gauge Structure of Time-Dependent Adiabatic Systems 2.3.1 The Wilczek–Zee Holonomy 2.3.2 Adiabatic Evolution of a Tripod 2.3.3 Closing the Energy Gap: Abelian Magnetic Monopole in Adiabatic Evolution 2.4 Born–Oppenheimer Theory 2.4.1 Synthetic Gauge Structure of Born–OppenheimerTheory 2.4.2 Adiabatic Versus Diabatic Representations 2.4.3 Born–Oppenheimer Approximation 2.4.4 Synthetic Gauge Structure of an Atom in an Inhomogeneous Magnetic Field References 3 Conical Intersections in Molecular Physics 3.1 Introduction 3.2 Where Electronic Adiabatic Potential Surfaces Cross: Intersection Points 3.2.1 The Existence of Intersections 3.2.2 Topological Tests for Intersections 3.2.3 The Molecular Aharonov–Bohm Effect on the Nuclear Motion 3.3 The Jahn–Teller Effect 3.3.1 Spontaneous Breaking of Molecular Symmetry: The Jahn–Teller Theorem 3.3.2 The E ε JT Model 3.4 Dynamical Manifestation of Conical Intersections References 4 Conical Intersections in Condensed Matter Physics 4.1 Band Theory 4.1.1 Bloch's Theorem 4.1.2 Tight-Binding Model 4.1.3 Bloch and Wannier Functions 4.1.4 Single Particle Lattice Models and Bloch Hamiltonians 4.1.5 Symmetries 4.1.5.1 Time-Reversal Symmetry 4.1.5.2 Particle-Hole Symmetry 4.1.5.3 Chiral Symmetry 4.1.6 Topological Invariant 4.1.6.1 Geometric Phase Revisited 4.1.6.2 Chern and Winding Numbers 4.2 Spin–Orbit Couplings 4.2.1 Rashba and Dresselhaus Spin–Orbit Couplings 4.2.2 Intrinsic Spin Hall Effect 4.3 Superconductors 4.4 Graphene 4.4.1 Tight-Binding Band Spectrum 4.4.2 Relativity at Almost `Zero' 4.4.3 The Haldane Model 4.5 Weyl Semimetals References 5 Conical Intersections in Cold Atom Physics 5.1 Introduction 5.2 Light–Matter Interactions and Optical Forces 5.3 Adiabatic Dynamics and Synthetic Gauge Potentials 5.3.1 The Adiabatic Principle and Dressed States 5.3.2 A Pedagogical Example: The Two-Level System 5.4 Spin–Orbit Coupling and Non-Abelian Phenomena 5.4.1 Spectrum 5.4.2 A Quasi-Relativistic Example: The AtomicZitterbewegung 5.4.2.1 The Dirac Limit 5.4.2.2 Zitterbewegung 5.4.2.3 Dark State Dynamics 5.4.2.4 Exact Solutions in the Schrödinger Limit 5.5 Cold Atoms and the Bose–Einstein Condensate 5.5.1 The Description of a Condensate 5.5.2 Conical Intersections and the Gross–Pitaevskii Equation References 6 Conical Intersections in Other Physical Systems 6.1 Cavity Quantum Electrodynamics 6.1.1 The Jaynes–Cummings and Quantum Rabi Models 6.1.2 The Intrinsic Anomalous Hall Effect in Cavity QED 6.2 Trapped Ions 6.3 Classical Optics 6.4 Open Quantum Systems 6.4.1 The Lindblad Master Equation 6.4.2 Exceptional Points References A Identical Particles A.1 Second Quantisation A.2 Peierls Substitution A.2.1 Hofstadter Butterfly References Index