دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Chiranji Lal Chowdhary (editor), Mamoun Alazab (editor), Ankit Chaudhary (editor), Saqib Hakak (editor), G. Thippa Reddy (editor) سری: Computing and Networks ISBN (شابک) : 1839533234, 9781839533235 ناشر: The Institution of Engineering and Technology سال نشر: 2021 تعداد صفحات: 553 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Computer Vision and Recognition Systems Using Machine and Deep Learning Approaches: Fundamentals, Technologies and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستمهای بینایی و تشخیص رایانه با استفاده از رویکردهای یادگیری ماشینی و عمیق: مبانی، فناوریها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بینایی رایانه یک حوزه علمی میان رشتهای است که به نحوه بدست آوردن، ذخیره، تفسیر و درک تصاویر دیجیتال یا ویدیوها توسط رایانهها با استفاده از هوش مصنوعی مبتنی بر شبکههای عصبی، یادگیری ماشین و روشهای یادگیری عمیق میپردازد. آنها در برنامه های بی شماری مانند بازیابی و طبقه بندی تصویر، نظارت بر رانندگی و حمل و نقل، تشخیص پزشکی و نظارت هوایی استفاده می شوند.
نوشته شده توسط تیمی از متخصصان بین المللی، این کتاب ویرایش شده وضعیت پیشرفته را پوشش می دهد. هنر تحقیقات پیشرفته در زمینههای بینایی کامپیوتری و سیستمهای تشخیص از مفاهیم بنیادی گرفته تا روششناسی و فناوریها و کاربردهای دنیای واقعی از جمله تشخیص اشیا، بیومتریک، تشخیص Deepfake، تحلیل احساسات و احساسات، نظارت بر دوربین نظارت بر ترافیک، کنترل خودرو و تصاویر سنجش از راه دور هوایی. .
این کتاب برای محققان صنعتی و دانشگاهی، دانشمندان و مهندسان در زمینههای بینایی کامپیوتر، بینایی ماشین، پردازش و تشخیص تصویر، چند رسانهای، هوش مصنوعی، یادگیری ماشین و عمیق، علم داده، بیومتریک مفید خواهد بود. ، امنیت و پردازش سیگنال. همچنین یک مرجع دوره عالی برای دانشجویان و مدرسان پیشرفته در این زمینه های تحقیقاتی خواهد بود.
Computer vision is an interdisciplinary scientific field that deals with how computers obtain, store, interpret and understand digital images or videos using artificial intelligence based on neural networks, machine learning and deep learning methodologies. They are used in countless applications such as image retrieval and classification, driving and transport monitoring, medical diagnostics and aerial monitoring.
Written by a team of international experts, this edited book covers the state-of-the-art of advanced research in the fields of computer vision and recognition systems from fundamental concepts to methodologies and technologies and real world applications including object detection, biometrics, Deepfake detection, sentiment and emotion analysis, traffic enforcement camera monitoring, vehicle control and aerial remote sensing imagery.
The book will be useful for industry and academic researchers, scientists and engineers in the fields of computer vision, machine vision, image processing and recognition, multimedia, AI, machine and deep learning, data science, biometrics, security, and signal processing. It will also make a great course reference for advanced students and lecturers in these fields of research.
Title Copyright Contents About the editors Preface 1 Computer vision and recognition-based safe automated systems 1.1 Introduction 1.1.1 Role of computer vision in automation 1.1.2 Organization of the chapter 1.2 Literature survey of safe automation systems 1.3 Application of computer vision technology in automation 1.3.1 Using face ID in mobile devices 1.3.2 Automated automobiles 1.3.3 Computer vision in agriculture 1.3.4 Computer vision in the health sector 1.3.5 Computer vision in the e-commerce industry 1.3.6 Generating 3D maps 1.3.7 Classifying and detecting objects 1.3.8 Congregation data for training algorithms 1.3.9 Low-light mode with computer vision 1.4 Ensuring safety during COVID-19 using computer vision 1.4.1 AI started from bringing humans closer to forcing them in keeping apart 1.4.2 Access control through computer vision 1.4.3 Thermal fever detection cameras 1.4.4 Social distancing detection 1.4.5 Sanitization prioritization 1.4.6 Face mask compliance 1.5 Discussion and conclusion References 2 DLA: deep learning accelerator 2.1 Introduction 2.2 ASIC-based design accelerator 2.3 FPGA-based design accelerator 2.4 NoC-based design accelerator 2.5 Flow mapping and its impact on DLAs__amp__#8217; performance 2.6 A heuristic or dynamic algorithm__amp__#8217;s role on a DLA__amp__#8217;s efficiency 2.7 Brief state-of-the-art survey References 3 Intelligent image retrieval system using deep neural networks 3.1 Introduction 3.2 Conventional content-based image retrieval (CBIR) system 3.2.1 Semantic-based image retrieval (SBIR) system 3.3 Deep learning 3.4 Image retrieval using convolutional neural networks (CNN) 3.5 Image retrieval using autoencoders 3.6 Image retrieval using generative adversarial networks (GAN) References 4 Handwritten digits recognition using dictionary learning 4.1 Introduction 4.1.1 Optical character recognition 4.1.2 Handwritten recognition 4.2 Related works 4.3 Dictionary learning 4.4 DPL variants for HNR 4.4.1 Dictionary pair learning model 4.4.2 Incoherent dictionary pair learning (InDPL) 4.4.3 Labeled projective dictionary pair learning 4.5 Input data preparation 4.5.1 Image preprocessing 4.5.2 Histogram of oriented gradient 4.5.3 Classification stage 4.6 HNR datasets 4.7 Experimental results 4.7.1 Cross-validation 4.7.2 Benchmarking results 4.8 Conclusions References 5 Handwriting recognition using CNN and its optimization approach 5.1 Introduction 5.2 Related works 5.3 Background 5.3.1 Convolutional neural network 5.3.2 Gated convolutional neural network 5.3.3 Gated recurrent unit (GRU) 5.3.4 Connectionist temporal classification (CTC) 5.3.5 Residual operation 5.3.6 Bi-directional gated recurrent unit (BiGRU) 5.3.7 Squeeze and excited network (SENet) 5.3.8 Linear bottleneck network 5.3.9 Encoder and decoder model 5.4 Methodology 5.4.1 Data gathering 5.4.2 Preprocessing 5.4.3 Model overview 5.4.4 Metrics 5.4.5 Training configurations 5.4.6 Unseen testing 5.4.7 Inference time testing 5.4.8 Visualize inside the model 5.5 Experiments 5.5.1 Experiment 1: Bluche versus Puigcerver versus Flor model 5.5.2 Experiment 2: performance comparison of the encoder 5.5.3 Experiment 3: performance comparison of the decoder 5.5.4 Experiment 4: performance comparison of the skipped connection 5.5.5 Experiment 5: performance comparison of other ResFlor model 5.5.6 Experiment 6: ResFlor residual with SE network 5.5.7 Experiment 7: ResFlor with residual and bottleneck network 5.6 Summary 5.7 Conclusion and future work Acknowledgments References 6 Real-time face mask detection on edge IoT devices 6.1 IoT devices and object detection 6.1.1 IoT devices and object detection 6.1.2 Real-time object detection on edge IoT devices 6.1.3 A generic detection algorithm 6.2 Literature survey 6.3 Traditional feature extraction techniques 6.3.1 Histogram of oriented gradients (HOG) 6.3.2 Scale invariant feature transform (SIFT) 6.3.3 Speeded up robust features (SURF) 6.4 Traditional detection methods 6.4.1 Histogram of oriented gradients with support vector machines (HOG + SVM) 6.5 Traditional face detection techniques 6.5.1 Viola__amp__#8211;Jones Haar cascade method 6.6 Face mask detection 6.7 Deep learning for object detection 6.7.1 Convolutional neural networks (CNNs) 6.7.2 Object detection using deep learning 6.7.3 Faster RCNN for object detection 6.7.4 Enhancing faster RCNN with MobileNet 6.8 Internet and deep learning 6.8.1 Client__amp__#8211;server architecture 6.9 Edge IoT architecture 6.10 Implementing an edge IoT architecture 6.10.1 Dynamic web pages 6.10.2 Backend using Node.js 6.10.3 MongoDB as database 6.11 Discussion 6.12 Conclusion References 7 Current challenges and applications of DeepFake systems 7.1 Introduction to DeepFake 7.1.1 Scenario 7.2 Various DeepFake detection methods available and their limitations 7.2.1 Traditional detection methods 7.2.2 Methods based on deep learning 7.3 Applications used to forge the multimedia 7.4 Current challenges and future of the technology 7.4.1 Quality of DeepFake dataset 7.4.2 Performance evaluation 7.4.3 Explainability of detection results 7.4.4 Temporal aggregation 7.4.5 Social media laundering 7.5 Conclusion References 8 Vehicle control system based on eye, iris, and gesture recognition with eye tracking 8.1 Introduction 8.2 Eye tracking 8.2.1 How eye tracker works 8.3 Human gesture 8.3.1 Head movement 8.4 Applications of eye tracking 8.5 Top eye tracking hardware companies 8.6 Case studies 8.7 Conclusion References 9 Sentiment analysis using deep learning 9.1 Sentiment analysis: an interesting problem 9.2 Sentiment and opinions 9.3 Components of opinion 9.3.1 Levels in sentiment analysis 9.3.2 Classification techniques 9.3.3 Classification types 9.4 Deep learning 9.5 Machine learning 9.6 Traditional learning 9.7 Hybrid learning approaches 9.8 Deep neural networks 9.8.1 Deep belief network 9.8.2 Convolutional neural networks 9.8.3 Stacked autoencoders 9.9 Convolutional neural networks 9.9.1 Word embeddings 9.9.2 Bag of words (BOW) 9.9.3 ConvNet structure 9.10 Proposed model 9.10.1 Datasets and experimental setup 9.10.2 Results 9.10.3 Effect of filter region size 9.10.4 Effect of number of filters 9.10.5 Effect of different classifiers 9.11 Conclusions and future scope References 10 Classification of prefeature extracted images with deep convolutional neural network in facial emotion recognition of vehicle driver 10.1 Introduction and related work 10.2 Proposed models 10.2.1 Datasets 10.2.2 Preprocessing 10.2.3 Prefeature extraction 10.2.4 Convolutional neural networks 10.2.5 Model design 10.2.6 Metrics 10.2.7 System configuration 10.3 Experiments and results 10.4 Vehicle driver emotion recognition experimental setup, results, and discussion 10.5 Conclusion Acknowledgments References 11 MobileNet architecture and its application to computer vision 11.1 Introduction 11.2 Preliminaries 11.2.1 Artificial neural network 11.2.2 Convolution neural network 11.2.3 Deep convolution neural network 11.3 Benchmarked convolutional neural network 11.3.1 VGG16 11.3.2 Inception v3 11.4 MobileNet architecture 11.4.1 MobileNetv1 11.4.2 MobileNetv2 11.4.3 MobileNetv3 11.4.4 NASNet mobile 11.5 Model optimization techniques 11.5.1 Quantization technique 11.6 Quantized deep convolutional neural network 11.6.1 Methodology 11.7 Case study: healthcare domain 11.7.1 Diabetic retinopathy 11.7.2 Kaggle diabetic retinopathy image datasets 11.7.3 Approach 11.7.4 Experiment results and discussion 11.7.5 Conclusion 11.8 Selected MobileNet application 11.8.1 Image classification 11.8.2 Object detection 11.8.3 Segmentation 11.9 Future direction References 12 Study on traffic enforcement cameras monitoring to detect the wrong-way movement of vehicles using deep convolutional neural network 12.1 Introduction 12.2 Background 12.3 Techniques for data collection 12.3.1 Closed-circuit television 12.3.2 Manual videos 12.4 Purpose and benefit of the cameras monitoring system 12.5 Techniques used in the monitoring of vehicles 12.5.1 Convolution neural network 12.5.2 R-CNN 12.5.3 Fast region-based convolution neural network 12.5.4 Faster R-CNN 12.5.5 Single-shot MultiBoxDetector 12.5.6 You Only Look Once 12.6 Case study 12.6.1 The detection of wrong-way drive of automobiles based on appearance using deep convolutional neural network 12.6.2 Real-time wrong-direction detection based on deep learning 12.6.3 A vehicle finding and counting system based on vision using deep learning 12.6.4 A highway automobile discovery algorithm based on CNN 12.6.5 Comparison of case studies 12.7 Conclusion References 13 Glasses for smart tourism applications 13.1 Introduction 13.1.1 Motivation 13.1.2 Contribution of our work 13.2 Article structure 13.3 Existing technologies related to smart glasses 13.3.1 Applications of smart glasses 13.3.2 Smart glasses technology in the market 13.3.3 Smart glasses solutions papers 13.4 System assumptions 13.5 Functional architecture and technologies relevant 13.5.1 Voice to text conversion-KALDI 13.5.2 Name remember 13.5.3 Facial features extraction 13.5.4 Object (plant and animal) identification 13.5.5 Text detection 13.5.6 Text-translation 13.5.7 Navigation 13.5.8 Text to speech conversion 13.6 Proposed style of interaction (KBSIS) 13.6.1 KALDI 13.6.2 Dataset and model used 13.6.3 Inputs 13.6.4 Inference from input and processing 13.6.5 Outputs 13.7 Results and discussion 13.7.1 Navigation 13.7.2 Music 13.7.3 Text from image and Translate 13.7.4 Remembering face and naming 13.7.5 Face characteristics 13.7.6 Weather 13.7.7 Plant identification and search 13.7.8 Animal identification and search 13.8 Conclusion References 14 Renal calculi detection using modified grey wolf optimization 14.1 Introduction 14.2 Background 14.2.1 Image segmentation 14.2.2 Grey wolf optimization 14.2.3 Previous work 14.3 Proposed approach for renal calculi detection 14.3.1 Challenges in renal calculi detection 14.3.2 Proposed approach 14.4 Experiment and results 14.4.1 Dataset 14.4.2 Performance analysis 14.5 Conclusions and future scope References 15 On multi-class aerial image classification using learning machines 15.1 Introduction 15.2 Learning approaches 15.2.1 Deep learning networks 15.2.2 Feature learning 15.2.3 Challenges for deep learning 15.2.4 Challenges related to aerial video classification 15.2.5 Applications 15.3 Learning architecture and classification 15.3.1 Supervised learning architectures 15.3.2 Unsupervised learning 15.3.3 Deep learning for planning and situational awareness 15.3.4 Deep learning for motion control 15.3.5 Object detection 15.3.6 Classification 15.4 Training 15.4.1 Weight initialization 15.4.2 Convolutional methods 15.4.3 Activation functions 15.4.4 Subsampling or pooling layer 15.4.5 Optimization techniques 15.4.6 Benchmark datasets 15.5 Energy efficiency in learning approaches 15.6 Performance metrics 15.7 Development kits and frameworks 15.8 Discussions and future directions References 16 Machine learning methodology toward identification of mature citrus fruits 16.1 Introduction 16.1.1 Harvesting 16.1.2 Farm automation 16.1.3 Fruit detection 16.1.4 Proposed method 16.2 Literature survey 16.3 Implementation 16.3.1 Image acquisition and data collection 16.3.2 Pre-processing 16.3.3 Feature extraction 16.3.4 Machine learning model and database formation 16.3.5 Data retrieval 16.3.6 Match with dataset or testing the model 16.3.7 Display result 16.3.8 Application design 16.4 Experiments and result 16.4.1 Qualification measures 16.4.2 Training result 16.4.3 Testing result 16.5 Conclusion 16.5.1 Future scope References 17 Automated detection of defects and grading of cashew kernels using machine learning 17.1 Introduction 17.1.1 Related work 17.1.2 Proposed methodology 17.2 Defects and grades of cashew kernels 17.2.1 Cashew kernel manufacturing process 17.2.2 Defects of cashew kernel 17.2.3 Grades of cashew kernel 17.3 Implementation of the methodology 17.3.1 Image preprocessing and segmentation 17.3.2 Feature extraction 17.3.3 Classification 17.4 Results and discussions 17.5 Conclusion References Index