ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Computational Models in Biomedical Engineering: Finite Element Models Based on Smeared Physical Fields: Theory, Solutions, and Software

دانلود کتاب مدل‌های محاسباتی در مهندسی پزشکی: مدل‌های اجزای محدود بر اساس میدان‌های فیزیکی لکه‌دار: نظریه، راه‌حل‌ها و نرم‌افزار

Computational Models in Biomedical Engineering: Finite Element Models Based on Smeared Physical Fields: Theory, Solutions, and Software

مشخصات کتاب

Computational Models in Biomedical Engineering: Finite Element Models Based on Smeared Physical Fields: Theory, Solutions, and Software

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 0323884725, 9780323884723 
ناشر: Academic Press 
سال نشر: 2022 
تعداد صفحات: 399
[402] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 18 Mb 

قیمت کتاب (تومان) : 45,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Computational Models in Biomedical Engineering: Finite Element Models Based on Smeared Physical Fields: Theory, Solutions, and Software به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مدل‌های محاسباتی در مهندسی پزشکی: مدل‌های اجزای محدود بر اساس میدان‌های فیزیکی لکه‌دار: نظریه، راه‌حل‌ها و نرم‌افزار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مدل‌های محاسباتی در مهندسی پزشکی: مدل‌های اجزای محدود بر اساس میدان‌های فیزیکی لکه‌دار: نظریه، راه‌حل‌ها و نرم‌افزار



مدل‌های محاسباتی در مهندسی زیست پزشکی: مدل‌های اجزای محدود بر اساس میدان‌های فیزیکی لکه‌دار: نظریه، راه‌حل‌ها و نرم‌افزار روش‌های محاسباتی جدیدی را که توسط نویسندگان ارائه شده است، مورد بحث قرار می‌دهد که به موضوعات مختلفی در زیست‌پزشکی می‌پردازد. ، با مفاهیمی که متکی به میدان فیزیکی به اصطلاح لکه دار است که در روش اجزای محدود تعبیه شده است. یک روش جدید و ساده توسط مدل حمل و نقل کوجیک (KTM) آنها نشان داده شده است، که در آن یک عنصر محدود آغشته شده کامپوزیت (CSFE) به عنوان یک فرمول FE حاوی میدان های مختلف (به عنوان مثال، غلظت دارو، پتانسیل الکتریکی) در یک محیط ترکیبی، مانند بافت، که شامل سیستم مویرگی و لنفاوی، گروه های سلولی و اندامک های مختلف است.

حوزه های پیوسته با توجه به کسر حجمی خود در مدل کلی شرکت می کنند. قوانین حاکم و پارامترهای مادی به هر یک از حوزه ها اختصاص داده شده است. علاوه بر این، میدان‌های پیوسته در هر گره FE توسط عناصر اتصال که موانع بیولوژیکی مانند دیواره‌های عروق و سلول‌ها را در نظر می‌گیرند، جفت می‌شوند.


توضیحاتی درمورد کتاب به خارجی

Computational Models in Biomedical Engineering: Finite Element Models Based on Smeared Physical Fields: Theory, Solutions, and Software discusses novel computational methodologies developed by the authors that address a variety of topics in biomedicine, with concepts that rely on the so-called smeared physical field built into the finite element method. A new and straightforward methodology is represented by their Kojic Transport Model (KTM), where a composite smeared finite element (CSFE) as a FE formulation contains different fields (e.g., drug concentration, electrical potential) in a composite medium, such as tissue, which includes the capillary and lymphatic system, different cell groups and organelles.

The continuum domains participate in the overall model according to their volumetric fractions. The governing laws and material parameters are assigned to each of the domains. Furthermore, the continuum fields are coupled at each FE node by connectivity elements which take into account biological barriers such as vessel walls and cells.



فهرست مطالب

Front Cover
Computational Models in Biomedical Engineering
Computational Models in Biomedical Engineering: Finite Element Models Based on Smeared Physical Fields: Theory, Solutions, and Software
Copyright
Contents
1 - Basic processes in living organisms
	1.1 Introduction: mass transport as a vital process in living organisms
	1.2 Circulatory system
	1.3 Tissue
	1.4 Cells
	1.5 Specificities of the body organs with respect to transport
	1.6 Tissue microenvironment within organs and physiological barriers to transport
	References
2 - Fundamental laws for physical fields and mechanics
	2.1 Diffusion
		2.1.1 Diffusion within a continuum
		2.1.2 One-dimensional diffusion
		2.1.3 Diffusion with convection
	2.2 Heat conduction
	2.3 Flow through porous media
	2.4 Electrostatics
		2.4.1 Ohm's law and continuity equation for current flux density
		2.4.2 One-dimensional electrical conduction—the cable equation
	2.5 Fluid flow
		2.5.1 Three-dimensional fluid flow
		2.5.2 Pipe flow
	2.6 Mechanics of solids
		2.6.1 Kinematics of deformation
		2.6.2 Stresses
		2.6.3 Principle of virtual work
		2.6.4 Constitutive relations
	References
3 - Kojic transport model (KTM) for physical fields
	3.1 Introduction: finite element method as the most powerful computational method
	3.2 Finite element formulation for field problems
		3.2.1 General 3D problems
		3.2.2 One-dimensional problems
	3.3 Kojic transport model as a multiscale multidomain FE model of mutually dependent smeared physical fields
		3.3.1 Formulation of the connectivity finite elements
		3.3.2 Transport tensor
		3.3.3 Composite smeared finite element (CSFE)
	References
4 - Smeared finite element formulation for mechanics
	4.1 FE modeling of 3D solid deformation
	4.2 Shell deformation
	4.3 Large strain FE formulation
		4.3.1 Use of Green–Lagrange strains
		4.3.2 Application of logarithmic strains in the FE models
		4.3.3 Generalization of logarithmic strains
	4.4 Fluid mechanics
	4.5 Solid–fluid and solid–solid interaction
		4.5.1 Solid–fluid interaction
		4.5.2 Solid–solid interaction
	4.6 Composite smeared finite element for mechanics (CSFEM)
		4.6.1 A general expressions for the virtual power for composite media
		4.6.2 Contact elements for interaction between domains
		4.6.3 Formulation of composite smeared finite element for mechanics (CSFEM)
	4.7 Numerical examples
		4.7.1 Verification examples
		4.7.2 Application of the smeared model to tumor growth
	References
5 - Multiscale hierarchical models for diffusion in composite media and tissue
	5.1 Introduction
	5.2 Multiscale diffusion and numerical homogenization
		5.2.1 Diffusion within nanochannels with surface interaction effects
		5.2.2 MD-FE hierarchical model for diffusion
		5.2.3 Numerical homogenization
		5.2.4 Mass release curves as constitutive relations for diffusion
		5.2.5 Partitioning
	5.3 Coupled convective and diffusive transport within vessels and tissue
	5.4 Examples
	References
6 - Application of Kojic transport model (KTM) to convective-diffusive transport and electrophysiology in tissue and capill ...
	6.1 Introduction—mass transport in living organisms
	6.2 KTM for convective and diffusive transport
		6.2.1 Biological tissue as a composite medium
		6.2.2 Composite smeared finite element (CSFE) for mass transport
		6.2.3 Connectivity elements and partitioning
		6.2.4 Accuracy of CSFE models and correction function
	6.3 Application of KTM in electrophysiology
		6.3.1 Introduction to computational modeling in electrophysiology
		6.3.2 KTM computational model for electric potential
		6.3.3 Coupling electric potential field and ionic transport
	6.4 KTM for drug release from nanofibers
		6.4.1 Introduction—technical solutions for controlled drug release from nanofibers
		6.4.2 Radial finite element for modeling drug release
		6.4.3 Application of KTM to drug release from nanofibers
	6.5 Examples
		6.5.1 Convective-diffusive transport
		6.5.2 Electric potential field in tissue
		6.5.3 Coupling electric potential field and ionic transport—example
		6.5.4 Accuracy of CSFE models and correction function—example
		6.5.5 Models of mass release from nanofibers
	References
7 - Heart electrophysiology and mechanics
	7.1 Heart physiology
	7.2 Electrophysiology
		7.2.1 Conduction within the heart tissue
		7.2.2 Traditional computational models in the heart electrophysiology
		7.2.3 Application of the KTM to electrophysiology—a summary of equations
		7.2.4 Relation of the KTM (smeared) methodology to other computational models in electrophysiology
		7.2.5 Examples of the FE models for heart electrophysiology
	7.3 Heart mechanics
		7.3.1 Composition of heart tissue
		7.3.2 Finite element models for heart
	7.4 Computational models for the heart tissue passive mechanical response
		7.4.1 Introduction—a review of constitutive relations for the cardiac tissue
		7.4.2 Computational procedure using directly the constitutive curves
		7.4.3 Verification of the computational procedure
	7.5 Finite element models of the left ventricle—wall deformation and blood flow
		7.5.1 Simplified parametric model
		7.5.2 FE model based on echocardiogram for the motion of the ventricle internal surface
	References
8 - Description of the software accompanying the book
	8.1 Introduction
	8.2 General structure of graphical user interface (GUI) software accompanying the book
		8.2.1 Title bar
		8.2.2 Main menu
			8.2.2.1 Examples—description of software modules
			8.2.2.2 File
			8.2.2.3 View
				8.2.2.3.1 Zoom
				8.2.2.3.2 Pan A
				8.2.2.3.3 Viewpoint
				8.2.2.3.4 Shading
				8.2.2.3.5 Clip plane
				8.2.2.3.6 Layers
				8.2.2.3.7 Options
			8.2.2.4 Calculation
			8.2.2.5 Results
				8.2.2.5.1 Result options
				8.2.2.5.2 Contour plot
				8.2.2.5.3 Misc
					8.2.2.5.3.1 Help
		8.2.3 Workspace
		8.2.4 Common menu bar
	8.3 Procedures for running examples and visualization of results
	References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z
Back Cover




نظرات کاربران