دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2022 نویسندگان: Mariya Ouaissa (editor), Zakaria Boulouard (editor), Mariyam Ouaissa (editor), Bassma Guermah (editor) سری: ISBN (شابک) : 3030771849, 9783030771843 ناشر: Springer سال نشر: 2022 تعداد صفحات: 279 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Computational Intelligence in Recent Communication Networks (EAI/Springer Innovations in Communication and Computing) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش محاسباتی در شبکه های ارتباطی اخیر (نوآوری های EAI/Springer در ارتباطات و محاسبات) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents About the Editors 1 An Overview of Blockchain and 5G Networks 1.1 Introduction 1.2 Background 1.2.1 Blockchain 1.2.1.1 Blockchain Taxonomy 1.2.1.2 Blockchain Platform Types 1.2.1.3 Blockchain Consensus 1.2.1.4 Blockchain Smart Contract 1.2.1.5 Blockchain Sharding 1.2.1.6 Blockchain Oracle 1.3 5G Networks and Beyond: An Overview 1.3.1 Software-Defined Networking (SDN) 1.3.2 Network Function Virtualization (NFV) 1.3.3 Network Slicing 1.3.4 Multi-Access Edge Computing (MEC) 1.3.5 Device to Device (D2D) 1.3.6 Cloud Computing (CC) 1.4 Blockchain for 5G 1.4.1 Blockchain Integration with 5G Networks 1.4.2 Opportunities Brought by Blockchain Integration with 5G Networks 1.4.2.1 Security Improvements 1.4.2.2 Performance Enhancements 1.5 A Scalable and Secure Blockchain Suitable for 5G 1.5.1 A Scalable and Secure Blockchain Architecture Suitable for 5G 1.5.2 Architecture 1.5.2.1 Shared Blockchain 1.5.2.2 Peer-to-Peer Oracle Network 1.5.3 Design Components 1.5.3.1 Initialization 1.5.3.2 Reward 1.6 Challenges and Future Research Directions 1.6.1 Scalability and Performance 1.6.2 Standardization and Regulations 1.6.3 Resource Constraints 1.6.4 Interoperability 1.6.5 Security 1.6.6 Infrastructure Costs 1.7 Conclusion References 2 Deep Learning Approach for Interference Mitigation in MIMO-FBMC/OQAM Systems 2.1 Introduction 2.2 MIMO-FBMC/OQAM System Model 2.3 Problem Formulation 2.4 Deep Neural Network for Blind Detection and Interference Mitigation in MIMO-FBMC/OQAM Systems 2.4.1 Data Set 2.4.2 Learning Rule 2.5 Simulation Results 2.5.1 Deep Neural Network Performance: RMSE and Loss 2.5.2 Bit Error Rate 2.6 Conclusion References 3 Deep Learning-Based Non-orthogonal Multiple Access for 5G and Beyond Networks 3.1 Introduction 3.2 System Model 3.2.1 Principle 3.2.2 NOMA for Downlink 3.2.3 NOMA for Uplink 3.2.4 Imperfection in NOMA 3.2.5 Spectral and Energy Efficiency 3.3 Overview of Deep Learning Models 3.3.1 Deep Neural Network 3.3.2 Convolutional Neural Network 3.3.3 Recurrent Neural Network 3.4 Deep Learning-Based NOMA 3.5 Conclusion References 4 Traffic Sign Detection: A Comparative Study Between CNN and RNN 4.1 Introduction 4.2 Materials and Methods 4.2.1 Convolutional Neural Networks 4.2.1.1 Multilayer Neural Networks 4.2.1.2 Feed-Forward Neural Network 4.2.1.3 Learning and Training 4.2.1.4 Structure of a Convolutional Neural Network 4.2.1.5 Convolutional Layers 4.2.1.6 Shared Weights 4.2.1.7 Multiple Filters 4.2.1.8 Subsampling Layers 4.2.1.9 Fully Connected Layers 4.2.1.10 Correction Layers (ReLU) 4.2.1.11 Loss Layer (LOSS) 4.2.2 Recurrent Neural Networks 4.2.2.1 Applications of RNNs 4.2.2.2 Loss Function 4.2.2.3 Temporal Back Propagation 4.2.2.4 Activation Functions 4.2.2.5 Long Short-Term Memory 4.3 Proposed System 4.3.1 Comparison Between CNN and RNN 4.3.2 Our System 4.4 Results Obtained 4.5 Conclusion References 5 Merging Attack-Defense Tree and Game Theory to Analyze Vehicular Ad Hoc Network Security 5.1 Introduction 5.2 System Model 5.3 Fundamental Attack-Defense Tree 5.4 Attack-Defense Tree for VANET Availability 5.5 ROI and ROA for Attack-Defense Tree 5.6 VANET Availability Attack-Defense Game 5.6.1 Basics of the Game Theory 5.6.2 Modeling VANET Availability Attack-Defense Game 5.7 Conclusion References 6 A Secure Vehicle to Everything (V2X) Communication Model for Intelligent Transportation System 6.1 Introduction 6.2 Overview of Vehicular Networks 6.2.1 Vehicular Networks Components 6.2.2 Communication Architectures 6.2.2.1 Centralized Architecture: Vehicle-to-Infrastructure Communication 6.2.2.2 Distributed Architecture: Vehicle-to-Vehicle Communication 6.2.2.3 Hybrid Architecture 6.3 V2X Communications 6.4 Security Requirements 6.4.1 Authentication 6.4.1.1 Authentication of the ID 6.4.1.2 Property Authentication 6.4.2 Integrity 6.4.3 Confidentiality 6.4.4 Non-repudiation 6.4.5 Availability 6.4.6 Access Control 6.5 Preliminaries 6.5.1 Encrypt Using Elliptical Curves 6.5.1.1 Exchange of Keys by Elliptical Curves 6.5.1.2 Transmission of Messages 6.5.2 Attribute-Based Signature 6.5.2.1 Computational Assumption 6.5.2.2 Lagrange Interpolation 6.5.2.3 Attribute-Typed Signature 6.6 Proposed Scheme 6.7 Validation and Evaluation 6.7.1 Verification Environment 6.7.1.1 High-Level Protocol Specification Language (HLPSL) 6.7.1.2 Verification Hypotheses 6.7.1.3 Properties to Check 6.7.2 Security Analysis 6.7.3 Performance Evaluation 6.8 Conclusion References 7 A Novel Unsupervised Learning Method for Intrusion Detection in Software-Defined Networks 7.1 Introduction 7.2 Related Work 7.3 IDS-IF: An Overview 7.4 IDS-IF 7.5 Evaluation of IDS-IF 7.5.1 Experimental Environment 7.5.2 Performance Evaluation 7.6 Conclusion References 8 Deep Reinforcement Learning Modeling of a V2V Communication-Based Bike Avoidance Protocol for Increased Vehicular Flow 8.1 Introduction 8.2 Related Work 8.3 Overview 8.3.1 DBDA Protocol 8.3.2 Deep Reinforcement Learning 8.4 Markov Decision Process Modeling for DRL-Based DBDA Protocol 8.5 Deep Q-Learning Architecture for DRL-Based DBDA Protocol 8.5.1 Optimal Driving Policy Estimation 8.5.2 Deep Neural Network Architecture for Optimal Driving Learning 8.6 Discussion 8.7 Conclusion References 9 Deep Learning-Based Modeling of Pedestrian Perception and Decision-Making in Refuge Island for Autonomous Driving 9.1 Introduction 9.2 Related Work 9.3 Overview 9.3.1 APC Protocol 9.3.2 Deep Machine Learning 9.3.2.1 Conventional Neural Network 9.3.2.2 Long Short-Term Memory 9.4 Contribution 9.4.1 P-LPN-Based Architecture for Pedestrian Perception 9.4.2 LSTM Application for Real-Time Decision-Making 9.5 Discussion 9.6 Conclusion References 10 Machine Learning for Hate Speech Detection in Arabic Social Media 10.1 Introduction 10.2 Overview of Hate Speech Detection on Arabic Social Media 10.3 Natural Language Processing 10.3.1 Stemming 10.3.2 Bag of Words and Term Frequency 10.3.3 Term Frequency-Inverse Document Frequency (TF-IDF) 10.4 Dataset 10.4.1 YouTube 10.4.2 Alakrot\'s YouTube Comments Collection [10] 10.5 Methodology 10.5.1 Preprocessing 10.5.2 Algorithms 10.5.2.1 Logistic Regression (LR) 10.5.2.2 Random Forests (RF) 10.5.2.3 Support Vector Machines (SVM) 10.5.2.4 Long Short-Term Memory (LSTM) 10.5.3 Evaluation Metrics 10.6 Experimental Results 10.7 Conclusion and Perspectives References 11 PDDL Planning and Ontologies, a Tool for Automatic Composition of Intentional-Contextual Web Services 11.1 Introduction 11.2 Background and Related Work 11.2.1 Context and Context Awareness 11.2.2 Intention 11.2.3 Service Composition and Related Work 11.2.3.1 Service Composition Categories 11.2.3.2 Technical Classification of Service Composition Approaches 11.2.3.3 Service Composition Approaches 11.2.4 Summary 11.3 Intention and Context Modelling 11.3.1 Proposed Meta-Model 11.3.2 Ontology-Based Intention and Context Modeller 11.3.3 Intention Ontology 11.3.4 Context Ontology 11.3.5 OWL-S Extension for the Semantic Integration of Context and Intention 11.4 PDDL and OWL Interaction 11.4.1 Planning and PDDL 11.4.2 Mapping OWL to PDDL 11.5 Proposed Architecture Overview 11.5.1 CISCA Architecture 11.5.2 CISCA Architecture Features 11.6 Service Composition Module 11.7 A Walk-through Example 11.8 Conclusion and Future Work References 12 QSAR Anti-HIV Feature Selection and Prediction for Drug Discovery Using Genetic Algorithm and Machine Learning Algorithms 12.1 Introduction 12.2 Proposed Techniques 12.2.1 Genetic Algorithms 12.2.2 Machine Learning Methods in QSAR Problem 12.3 Proposed Approach and Validation 12.3.1 Data 12.3.2 Proposed Approach 12.3.3 Results and Validation 12.4 Conclusion References 13 Mining Electronic Health Records of Patients Using Linked Data for Ranking Diseases 13.1 Introduction 13.2 Related Work 13.2.1 Mining Electronic Health Records Using Linked Data 13.2.2 Diseases Identification Based on Clustering RDF Dataset 13.3 Results and Discussion 13.3.1 Dataset 13.3.2 Validation Metrics 13.3.3 Quality of Results and Discussion 13.4 Conclusion and Future Work References 14 The COVID-19 Pandemic\'s Impact on Stock Markets and Economy: Deep Neural Networks Driving the Alpha Factors Ranking 14.1 Introduction 14.2 Theoretical Background 14.2.1 Investment Factors 14.2.2 Cross-Sectional Investment 14.3 Cross-Sectional Investment-Based Clustering and Intelligent Delay 14.4 The COVID-19 Influence on the Markets and Economy 14.4.1 COVID-19 Growth Analysis 14.4.2 2008 Crisis Comparison 14.4.3 The Influence of COVID-19 on Companies According to their Geographic Revenue 14.4.4 Delay 14.5 Discussion 14.6 Conclusion Appendix Original and Customized Factors Utilized in this Work References 15 An Artificial Immune System for the Management of the Emergency Divisions 15.1 Introduction 15.2 Review of the Literature 15.2.1 Disruptions in Healthcare Facilities 15.2.2 The Status of Stress Within the Emergency Divisions 15.2.3 Improvement Actions to Deal with Situations of Tension 15.2.4 White Plan: The Guiding Standards 15.2.5 Improving the Capacity of Reception Within Hospitals 15.3 Artificial Immune System Techniques: An Overview 15.3.1 Key Conception 15.3.2 Negative Selection 15.3.3 Clonal Selection 15.3.4 Immunity Networks 15.3.5 Training Methods 15.4 Scrutiny of the Arriving Patients 15.5 Prioritizing Patients at Emergency Divisions 15.6 Projection of Filtering Methodology 15.6.1 Overview of the System 15.6.2 Distance Metrics Function 15.6.3 Choosing Manhattan Distance 15.7 Manhattan Distance: The Matching Method 15.7.1 Defining the Problem 15.7.2 Framework of Optimization 15.8 System Skeleton 15.8.1 Gathering Traces 15.8.2 Scrutinizing Traces 15.8.2.1 Basic Concept of Negative Selectivity NSA 15.9 Outcomes of Computation 15.9.1 Alimenting the Database 15.10 Conclusion References Index