ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب CompTIA Data+: DAO-001 Certification Guide: Complete coverage of the new CompTIA Data + (DAO-001) exam to help you pass on the first attempt

دانلود کتاب CompTIA Data+: DAO-001 Guide Certification: پوشش کامل آزمون جدید CompTIA Data + (DAO-001) برای کمک به شما در قبولی در اولین تلاش

CompTIA Data+: DAO-001 Certification Guide: Complete coverage of the new CompTIA Data + (DAO-001) exam to help you pass on the first attempt

مشخصات کتاب

CompTIA Data+: DAO-001 Certification Guide: Complete coverage of the new CompTIA Data + (DAO-001) exam to help you pass on the first attempt

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 1804616087, 9781804616086 
ناشر: Packt Publishing 
سال نشر: 2022 
تعداد صفحات: 370 
زبان: English 
فرمت فایل : RAR (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 36 Mb 

قیمت کتاب (تومان) : 40,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب CompTIA Data+: DAO-001 Certification Guide: Complete coverage of the new CompTIA Data + (DAO-001) exam to help you pass on the first attempt به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب CompTIA Data+: DAO-001 Guide Certification: پوشش کامل آزمون جدید CompTIA Data + (DAO-001) برای کمک به شما در قبولی در اولین تلاش نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب CompTIA Data+: DAO-001 Guide Certification: پوشش کامل آزمون جدید CompTIA Data + (DAO-001) برای کمک به شما در قبولی در اولین تلاش


توضیحاتی درمورد کتاب به خارجی

Learn data analysis essentials and prepare for the Data+ exam with this CompTIA exam guide, complete with practice exams towards the end.

Key Features

  • Apply simple methods of data analysis and find out when and how to apply more complicated ones
  • Take business requirements and produce a remote to the correct audience using appropriate visualizations
  • Learn about data governance rules, including quality and control

Book Description

The CompTIA Data+ certification exam not only helps validate a skill set required to enter one of the fastest-growing fields in the world, but also is starting to standardize the language and concepts within the field. However, there's a lot of conflicting information and a lack of existing resources about the topics covered in this exam, and even professionals working in data analytics may need a study guide to help them pass on their first attempt.

The CompTIA Data + (DAO-001) Certification Guide will give you a solid understanding of how to prepare, analyze, and report data for better insights.

You'll get an introduction to Data+ certification exam format to begin with, and then quickly dive into preparing data. You'll learn about collecting, cleaning, and processing data along with data wrangling and manipulation. As you progress, you'll cover data analysis topics such as types of analysis, common techniques, hypothesis techniques, and statistical analysis, before tackling data reporting, common visualizations, and data governance. All the knowledge you've gained throughout the book will be tested with the mock tests that appear in the final chapters.

By the end of this book, you'll be ready to pass the Data+ exam with confidence and take the next step in your career.

What you will learn

  • Become well versed in the five domains covered in the DAO-001 exam
  • Gain an understanding of all the major concepts covered in the exam and when to apply them
  • Understand the fundamental concepts behind ETL and ELT
  • Explore various imputation and deletion methods to deal with missing data
  • Identify and deal with outliers
  • Learn about and perform hypothesis testing
  • Create insightful reports to showcase your findings

Who this book is for

If you are a data analyst looking to get certified with DAO-001 exam this is the book for you. This CompTIA book is also ideal for who needs help in entering the quickly growing field of Data Analytics and are seeking professional certifications.

Table of Contents

  1. Introduction to Data +
  2. Data Structures, Types, and Formats
  3. Collecting Data
  4. Cleaning and Processing Data
  5. Data Wrangling and Manipulation
  6. Types of Analysis
  7. Measures of Central Tendency and Dispersion
  8. Common Techniques in Descriptive Statistics
  9. Hypothesis Testing
  10. Introduction to Statistical Analyses
  11. Types of Reports
  12. Turning a Question into a Report
  13. Common Visualizations
  14. Data Governance
  15. Data Quality and Management
  16. Practice Exam One
  17. Practice Exam Two


فهرست مطالب

Cover
Title Page
Copyright and Credit
Dedicated
Contributors
Table of Contents
Preface
Part 1: Preparing Data
Chapter 1: Introduction to CompTIA Data+
	Understanding Data+
		CompTIA Data+: DAO-001
		Data science
	Introducing the exam domains
		Data Concepts and Environments
	Exam format
		Who should take the exam?
	Summary
Chapter 2: Data Structures, Types, and Formats
	Understanding structured and unstructured data
		Structured databases
		Unstructured databases
		Relational and non-relational databases
	Going through a data schema and its types
		Star schema
		Snowflake schema
	Understanding the concept of warehouses and lakes
		Data warehouses
		Data marts
		Data lakes
	Updating stored data
		Updating a record with an up-to-date value
		Changing the number of variables being recorded
	Going through data types and file types
		Data types
		Variable types
		File types
	Summary
	Practice questions and their answers
		Questions
		Answers
Chapter 3: Collecting Data
	Utilizing public sources of data
		Public databases
		Open sources
		Application programming interfaces and web services
	Collecting your own data
		Web scraping
		Surveying
		Observing
	Differentiating ETL and ELT
		ETL
		ELT
		Delta load
	Understanding OLTP and OLAP
		OLTP
		OLAP
	Optimizing query structure
		Filtering and subsets
		Indexing and sorting
		Parameterization
		Temporary tables and subqueries
		Execution plan
	Summary
	Practice questions and their answers
		Questions
		Answers
Chapter 4: Cleaning and Processing Data
	Managing duplicate and redundant data
		Duplicate data
		Redundant data
	Dealing with missing data
		Types of missing data
		Deletion
		Imputation
		Interpolation
		Dealing with MNAR
	Understanding invalid data, specification mismatch, and data type validation
		Invalid data
		Specification mismatch
		Data type validation
	Understanding non-parametric data
	Finding outliers
	Summary
	Practice questions
		Questions
		Answers
Chapter 5: Data Wrangling and Manipulation
	Merging data
		Key variables
		Joining
		Blending
		Concatenation and appending
	Calculating derived and reduced variables
		Derived variables
		Reduction variables
	Parsing your data
	Recoding variables
		Recoding numbers into categories
		Recoding categories into numbers
	Shaping data with common functions
		Working with dates
		Conditional operators
		Transposing data
		System functions
	Summary
	Practice questions
		Questions
		Answers
Part 2: Analyzing Data
Chapter 6: Types of Analytics
	Technical requirements
	Exploring your data
		Common types of EDA
		EDA example
	Checking on performance
		KPIs
		Project management
		Process analytics
	Discovering trends
	Finding links
	Choosing the correct analysis
		Why is choosing an analysis difficult?
		Assumptions
		Making a list
		Finally choosing the analysis type
	Summary
	Practice questions
		Questions
		Answers
Chapter 7: Measures of Central Tendency and Dispersion
	Discovering distributions
		Normal distribution
		Uniform distribution
		Poisson distribution
		Exponential distribution
		Bernoulli distribution
		Binomial distribution
		Skew and kurtosis
	Understanding measures of central tendency
		Mean
		Median
		Mode
		When to use which
	Calculating ranges and quartiles
		Ranges
		Quartiles
		Interquartile range
	Finding variance and standard deviation
		Variance
		Standard deviation
	Summary
	Practice questions
		Questions
		Answers
Chapter 8: Common Techniques in Descriptive Statistics
	Understanding frequencies and percentages
		Frequencies
		Percentages
	Calculating percent change and percent difference
		Percent change
		Percent difference
	Discovering confidence intervals
	Understanding z-scores
	Summary
	Practice questions
		Questions
		Answers
Chapter 9: Hypothesis Testing
	Understanding hypothesis testing
		Why use hypothesis testing
		Hypothesis testing process
	Differentiating null hypothesis and alternative hypothesis
		Null hypothesis ()
		Alternative hypothesis ()
		Null hypothesis versus alternative hypothesis
	Learning about p-value and alpha
		p-value
		Alpha
		Alpha and tails
	Understanding type I and type II errors
		Type I error
		Type II error
		How type I and type II errors interact with alpha
	Writing the right questions
		The parts of a good question
		Qualities of a good question
		What to do about bad questions
	Summary
	Practice questions
		Questions
		Answers
Chapter 10: Introduction to Inferential Statistics
	Technical requirements
	Understanding t-tests
		What you need to know about t-tests
		T-test practice
	Knowing chi-square
		What you need to know about chi-square
		Chi-square practice
	Calculating correlations
		Correlation
		Correlation practice
	Understanding simple linear regression
		What you need to know about simple linear regression
		Simple linear regression practice
	Summary
	Practice questions
		Questions
		Answers
Part 3: Reporting Data
Chapter 11: Types of Reports
	Distinguishing between static and dynamic reports
		Point-in-time reports
		Real-time reports
		Static versus dynamic reports
	Understanding ad hoc and research reports
		Ad hoc reports
		Research reports
	Knowing about self-service reports
	Understanding recurring reports
		Compliance reports
		Risk and regulatory reports
		Operational reports (KPI reports)
	Knowing important analytical tools
		Query tools
		Spreadsheet tools
		Programming language tools
		Visualization tools
		Business services
		All-purpose tools
		Which tools you should learn to use
	Summary
	Practice questions
		Questions
		Answers
Chapter 12: Reporting Process
	Understanding the report development process
		Creating a plan
		Getting the plan approved
		Creating the report
		Delivering the report
	Knowing what to consider when making a report
		Business requirements
		Dashboard-specific requirements
	Understanding report elements
	Understanding report delivery
	Designing reports
		Branding
		Fonts, layouts, and chart elements
		Color theory
	Summary
	Practice questions
		Questions
		Answers
Chapter 13: Common Visualizations
	Understanding infographics and word clouds
		Infographics
		Word clouds
	Comprehending bar charts
		Bar charts
		Stacked charts
		Histograms
		Waterfall charts
	Charting lines, circles, and dots
		Line charts
		Pareto charts
		Pie charts
		Scatter plots
		Bubble charts
	Understanding heat maps, tree maps, and geographic maps
		Heat maps
		Tree maps
		Geographic maps
	Summary
	Practice questions
		Questions
		Answers
Chapter 14: Data Governance
	Understanding data security
		Access requirements
		Security requirements
	Knowing use requirements
		Acceptable use policy
		Data processing
		Data deletion
		Data retention
	Understanding data classifications
		Personally identifiable information
		Personal health information
		Payment Card Industry
	Handling entity relationship requirements
	Summary
	Practice questions
		Questions
		Answers
Chapter 15: Data Quality and Management
	Understanding quality control
		When to check for quality
		Data quality dimensions
		Data quality rules and metrics
	Validating quality
		Cross-validation
		Sample/spot check
		Reasonable expectations
		Data profiling
		Data audits
		Automated checks
	Understanding master data management
		When to use MDM
		Processes of MDM
	Summary
	Practice questions
		Questions
		Answers
Part 4: Mock Exams
Chapter 16: Practice Exam One
	Practice exam one
	Congratulations!
	Practice exam one answers
Chapter 17: Practice Exam Two
	Practice exam two
		Congratulations!
	Practice exam two answers
Index
Other Books You May Enjoy




نظرات کاربران