ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Comprehensive Organic Synthesis, 9 volume set

دانلود کتاب سنتز جامع آلی، مجموعه 9 جلدی

Comprehensive Organic Synthesis, 9 volume set

مشخصات کتاب

Comprehensive Organic Synthesis, 9 volume set

دسته بندی: شیمی ارگانیک
ویرایش: 1st 
نویسندگان: ,   
سری:  
ISBN (شابک) : 0080359299, 9780080405933 
ناشر: Pergamon 
سال نشر: 1991 
تعداد صفحات: 1227 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 29 مگابایت 

قیمت کتاب (تومان) : 43,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Comprehensive Organic Synthesis, 9 volume set به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سنتز جامع آلی، مجموعه 9 جلدی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب سنتز جامع آلی، مجموعه 9 جلدی

توسعه مسیرهای موثرتر به مواد شناخته شده و تولید مواد جدید از اهداف مهم در بسیاری از زمینه ها از جمله الکترونیک، کشاورزی، پزشکی و نساجی است. سنتز ارگانیک برای دستیابی به این اهداف مرکزی است. سنتز جامع آلی مضامین مشترکی را که زیربنای بسیاری از حوزه‌های ظاهراً متفاوت شیمی آلی است که زیربنای استراتژی‌های مصنوعی است، گرد هم می‌آورد، بنابراین یک نمای کلی جامع از این رشته مهم ارائه می‌کند.

مشارکت‌ها به گونه‌ای سازمان‌دهی شده‌اند که روشی را که شیمی‌دانان سنتزی رویکرد می‌کنند منعکس کند. مشکل. از نظر مولکول‌های آلی، کار به تشکیل پیوندهای کربن-کربن، معرفی هترواتم‌ها و تبدیل‌های هترواتمی تقسیم می‌شود. بنابراین، جلدهای 1-5 بر تشکیل کربن-کربن تمرکز دارند، اما جنبه‌هایی از معرفی هترواتم را نیز شامل می‌شوند. جلدهای 6-8 بر تبدیل هترواتمها متمرکز است، اما همچنین به تبادل پیوندهای کربن-کربن برای پیوندهای کربن-هترواتم می پردازد. سازماندهی فصول در امتداد موضوع گزینش پذیری است که یک سوال مهم در تعیین مناسب بودن روش مصنوعی است. جلد 9 حاوی نمایه های انباشته نویسنده و موضوع است.

ترکیب جامع آلی برای مخاطبان گسترده ای جذاب خواهد بود. این مجموعه یک کار مرجع ضروری برای همه کسانی خواهد بود که به دنبال اطلاعات در مورد حل مشکلات مصنوعی هستند، خواه آنها پزشکان با تجربه باشند یا شیمیدانانی که علایق اصلی آنها خارج از سنتز آلی است. بعلاوه، شیمیدانان مصنوعی که به حقایق ضروری در حوزه های جدید نیاز دارند، و همچنین دانشجویان کاملاً تازه وارد در این زمینه، سنتز آلی جامع را منبعی ارزشمند خواهند یافت که گزارش های معتبری از حقایق و مفاهیم اساسی ارائه می دهد.


توضیحاتی درمورد کتاب به خارجی

The development of more effective routes to known materials and the production of new materials are important goals in many areas, including electronics, agriculture, medicine and textiles. Organic synthesis is central to achieving these goals. Comprehensive Organic Synthesis draws together the common themes that underlie the many apparently disparate areas of organic chemistry which underpin synthetic strategies, thus providing a comprehensive overview of this important discipline.

The contributions have been organized to reflect the way in which synthetic chemists approach a problem. In terms of organic molecules, the work is divided into formation of carbon-carbon bonds, introduction of heteroatoms and heteroatom interconversions. Thus, Volumes 1-5 focus on carbon-carbon formation, but also include aspects of heteroatom introduction. Volumes 6-8 concentrate on interconversion of heteroatoms, but also deal with exchange of carbon-carbon bonds for carbon-heteroatom bonds. Organization of the chapters is along the theme of selectivity, which is a critical question in determining the suitability of a synthetic method. Volume 9 contains cumulative author and subject indexes.

Comprehensive Organic Synthesis will appeal to a wide audience. The set will be an essential reference work for all those seeking information on the solution of synthetic problems, whether they be experienced practitioners or chemists whose major interests lie outside organic synthesis. In addition, synthetic chemists requiring the essential facts in new areas, as well as students completely new to the field, will find Comprehensive Organic Synthesis an invaluable source, providing authoritative accounts of the essential facts and concepts.



فهرست مطالب

Front Matter......Page 1
Z......Page 0
Table of Contents......Page 3
Preface......Page 6
Contributors to Volume 8......Page 8
Abbreviations......Page 11
1.1.1 Introduction......Page 14
1.1.1.1 Kinetics and Mechanism......Page 15
1.1.2.1 Acyclic Carbonyl Compounds......Page 16
1.1.2.2 Cyclic Carbonyl Compounds......Page 18
1.1.3.1 Acyclic Carbonyl Compounds......Page 20
1.1.3.2 Cyclic Carbonyl Compounds......Page 27
1.1.4.1 Reduction of Enones......Page 28
1.1.4.2 Aldehydes versus Ketones......Page 29
1.1.4.3 Ketones versus Other Carbonyl Groups......Page 31
1.1.4.5 alpha-Halo Ketones......Page 32
1.1.5.1 Silicon......Page 33
1.1.5.2 Tin......Page 34
1.1.6 References......Page 35
1.2.1 Introduction......Page 38
1.2.2.1 General Considerations and Comparisons to Carbonyl Reductions......Page 39
1.2.2.2 Reduction of Preformed Imines and Iminium Salts of Ammonia, Primary and Secondary Amines......Page 40
1.2.2.3 Reduction of In Situ Generated Imines and Iminium Salts of Ammonia, Primary and Secondary Amines; Reductive Amination......Page 60
1.2.2.4 Reduction of Enamines via Iminium Ion Intermediates......Page 68
1.2.3.1 Reduction of Oximes, Oxime Ethers and Oxime Esters to Hydroxylamines and Derivatives......Page 73
1.2.3.3 Stereoselectivity of Reductions of Cyclic Oximes and Oxime Derivatives......Page 77
1.2.3.4 Reduction of Hydrazone Derivatives to Hydrazine Derivatives......Page 83
1.2.4 References......Page 87
1.3.1 Introduction......Page 92
1.3.2.1 Structural Types That May Donate Hydride......Page 93
1.3.2.2 Some Mechanisms for Hydride Donation......Page 94
1.3.2.3 Catalysis......Page 95
1.3.3.1 Hydride Transfer from Formic Acid......Page 97
1.3.3.2 Hydride Transfer from Aldehydes......Page 99
1.3.3.3 Hydride Transfer from Alcohols and Amines......Page 101
1.3.3.4 Hydride Transfer from Hydrocarbons......Page 104
1.3.3.5 Hydride Transfer from Heterocycles......Page 105
1.3.3.6 Hydride Transfer from Organometallics......Page 111
1.3.4 References......Page 116
1.4.1 Introduction......Page 120
1.4.2.1 Early Mechanistic Studies......Page 121
1.4.2.2 Reduction in the Absence of Proton Donors......Page 122
1.4.2.3 Reduction in the Presence of Proton Donors......Page 123
1.4.3.1 Reaction Medium......Page 124
1.4.3.3 Chemoselectivity......Page 126
1.4.3.4 Stereoselectivity......Page 129
1.4.4.1 Reduction of Imines and Oximes......Page 136
1.4.5 References......Page 139
1.5.1 Introduction......Page 141
1.5.2.1 Nonalkenic Ketones and Aldehydes......Page 143
1.5.2.2 Alkenic and Alkynic Ketones and Aldehydes......Page 146
1.5.3.1 Electroreduction of Acyclic and Cyclic Compounds with a C=N Bond......Page 147
1.5.4 References......Page 149
1.6.1 Introduction......Page 151
1.6.2.1 Hydrogenation of Aldehydes......Page 152
1.6.2.2 Hydrogenation of Ketones......Page 153
1.6.3.2 Hydrogenation of Schiff\'s Bases (Aldimines and Ketimines)......Page 155
1.6.4.1 Asymmetric Hydrogenation of the C=O Bond......Page 156
1.6.4.2 Asymmetric Hydrogenation of the C=N Bond......Page 157
1.6.5.1 Hydrogenation Using a Chirally Modified Catalyst......Page 161
1.6.6.1 Homogeneous Hydrogenation by Rhodium or Other Complexes......Page 164
1.6.7 References......Page 167
1.7.2 Asymmetric Reductions of the Carbonyl Group......Page 171
1.7.2.1 Chirally Modified Lithium Aluminum Hydride Reagents......Page 172
1.7.2.3 Asymmetric Reduction with Chirally Modified Boranes and Alanes......Page 182
1.7.2.4 Asymmetric Hydrosilylation......Page 185
1.7.2.5 Asymmetric Reduction of the C=N Double Bond......Page 188
1.7.4 References......Page 192
1.8.1 Introduction......Page 195
1.8.3 Sources of Enzymes and Microorganisms......Page 196
1.8.6.1 Enantiomeric Distinctions......Page 197
1.8.6.2 Enantiotopic Face Distinctions......Page 199
1.8.6.3 Diastereotopic Face Distinctions......Page 204
1.8.6.4 Combinations of Specificity......Page 205
1.8.6.5 Preparations of Deuterated or Tritiated Alcohols......Page 215
1.8.7 Reduction of C=N to CHNH......Page 216
1.8.9 Future Developments......Page 217
1.8.10 References......Page 219
1.9.1 Introduction......Page 222
1.9.2.2 Reduction with Dissolving Metals......Page 223
1.9.2.3 Reduction with Metal Hydrides......Page 224
1.9.3 Selective Reductions......Page 227
1.9.3.1 Acyclic Ketals......Page 228
1.9.3.2 Furanosides and Pyranosides......Page 229
1.9.3.3 Spiroketals......Page 231
1.9.3.4 Dioxolanes and Dioxanes......Page 232
1.9.3.5 Bicyclic Acetals and Ketals......Page 238
1.9.3.6 Azaacetals and Azaketals......Page 239
1.9.3.7 Thioacetals and Thioketals......Page 240
1.9.4 References......Page 243
1.10 Reduction of Carboxylic Acid Derivatives to Alcohols, Ethers and Amines......Page 246
1.10.1.2 Electrochemical and Dissolving Metal Reductions......Page 247
1.10.1.3 Reductions Using Metal Hydride Reagents......Page 248
1.10.2.1 Hydrogenation Reactions......Page 250
1.10.2.3 Reductions Using Metal Hydride Reagents......Page 251
1.10.3.2 Electrochemical and Dissolving Metal Reductions......Page 253
1.10.3.3 Reductions Using Metal Hydride Reagents......Page 255
1.10.4.1 Hydrogenation Reactions......Page 257
1.10.4.3 Reductions Using Metal Hydride Reagents......Page 258
1.10.5.2 Electrochemical and Dissolving Metal Reductions......Page 259
1.10.5.3 Reductions Using Metal Hydride Reagents......Page 260
1.10.6.1 Hydrogenation Reactions......Page 262
1.10.6.2 Electrochemical and Dissolving Metal Reductions......Page 263
1.10.6.3 Reductions Using Metal Hydride Reagents......Page 264
1.10.8 References......Page 265
1.11.1 Introduction......Page 269
1.11.2 Carboxylic Acids......Page 270
1.11.3 Acyl Halides......Page 272
1.11.4 Esters of Carboxylic Acids (Including Ortho Esters)......Page 276
1.11.5 Lactones......Page 278
1.11.6 Amides of Carboxylic Acids......Page 279
1.11.7 Lactams and Cyclic Imides......Page 283
1.11.8 Nitriles......Page 284
1.11.9 Miscellaneous Reductions to Aldehydes......Page 285
1.11.10 Reviews and Books......Page 288
1.11.11 References......Page 289
1.12.1 Introduction......Page 292
1.12.2 Carboxylic Acids......Page 293
1.12.3 Acyl Chlorides......Page 295
1.12.4 Carboxylic Acid Anhydrides......Page 300
1.12.5 Carboxylic Acid Esters......Page 301
1.12.7 Carboxylic Acid Amides......Page 302
1.12.8 Nitriles......Page 307
1.12.9 Imidoyl Chlorides......Page 309
1.12.10 Amidines, Imidates and Thioimidates......Page 311
1.12.11 Thioamides, Thioesters and Dithioesters......Page 312
1.12.12 References......Page 313
1.13.1 Introduction......Page 315
1.13.2.1 Reduction with Alkali Metals in Liquid Ammonia......Page 316
1.13.2.2 Clemmensen Reduction......Page 317
1.13.3.1 Reduction with NaBH_4 , LiAIH_4 and Related Reagents......Page 321
1.13.3.2 Reduction with BH_3 , DIBAL-H and Related Reagents......Page 323
1.13.3.3 Ionic Hydrogenation......Page 325
1.13.4.1 Catalytic Hydrogenation......Page 327
1.13.4.2 Hydrogen Transfer Reduction......Page 328
1.13.6 Miscellaneous......Page 329
1.13.7 References......Page 332
1.14 Reduction of C=X to CH_2 by Wolff-Kishner and Other Hydrazone Methods......Page 334
1.14.2.1 General Procedures and Mechanistic Aspects......Page 335
1.14.2.2 Modified Procedures......Page 336
1.14.2.3 Scope and Limitations......Page 345
1.14.3 Reduction of Aldehyde and Ketone Arylsulfonylhydrazones with Hydride Reagents......Page 350
1.14.3.2 Reductions with Sodium Borohydride......Page 352
1.14.3.3 Reductions with Sodium Cyanoborohydride......Page 357
1.14.3.4 Reductions with Catechol Borane and Related Reagents......Page 363
1.14.4 References......Page 366
2.1.1 Introduction......Page 370
2.1.3 Reduction of Aromatic Nitro and Nitroso Compounds to Azo and Azoxy Compounds......Page 371
2.1.4 Reduction of Aromatic Nitro and Nitroso Compounds to Hydroxylamines......Page 373
2.1.5.1 Transfer Hydrogenation......Page 374
2.1.5.2 Borohydride and Borane Reductions......Page 376
2.1.5.3 Reductions Involving Tellurium, Selenium and Sulfur......Page 377
2.1.5.4 Transition Metal Reductions......Page 378
2.1.5.6 Carbon Monoxide......Page 379
2.1.6 Reduction of Aliphatic Nitro Compounds to Hydroxylamines......Page 380
2.1.7.1 Nitroalkane Reductions......Page 381
2.1.7.2 Nitroalkene Reductions......Page 382
2.1.8 References......Page 384
2.2.1 Introduction......Page 387
2.2.2.1 Reduction to N-N Bonded Groups......Page 388
2.2.2.2 Reductive Cleavage......Page 389
2.2.3.1 Cleavage of Hydrazones......Page 393
2.2.3.2 Cleavage of Hydrazines, Hydrazides and N-Nitrosamines......Page 394
2.2.4.2 Deoxygenation of Nitrones, Nitrile Oxides and Tertiary Amine Oxides......Page 396
2.2.4.3 Reduction of Oximes to Imines......Page 398
2.2.4.4 Reduction of Hydroxylamines to Amines......Page 400
2.2.5.3 Reduction of Disubstituted Peroxides......Page 402
2.2.5.4 Reductive Ozonolysis of Alkenes......Page 404
2.2.6 References......Page 405
2.3.1 Introduction......Page 409
2.3.2.1 Reduction (Deoxygenation) of Sulfoxides......Page 410
23.2.2 Reduction of Sulfones......Page 413
2.3.2.3 Reduction of Sulfonic and Sulfinic Acids and Their Derivatives......Page 414
2.3.2.4 Reduction of Sulfimides (Sulfilimines) and Sulfoximides (Sulfoximines)......Page 415
2.3.2.5 Reduction of Se and Te Analogs......Page 416
2.3.3 Reduction of P=O Compounds......Page 417
2.3.4.1 Reduction of Disulfides and Diselenides......Page 418
2.3.5 References......Page 419
3.1 Heterogeneous Catalytic Hydrogenation of C=C and C tbond C......Page 422
3.1.1.2 Catalysts......Page 423
3.1.2.2 Kinetics......Page 424
3.1.2.3 Mechanism......Page 425
3.1.3 Hydrogenation of C=C......Page 426
3.1.3.1 Double Bond Migration......Page 427
3.1.3.2 Structure - Reactivity......Page 429
3.1.3.3 Stereochemistry......Page 431
3.1.3.4 Haptophilicity......Page 434
3.1.4.1 Semihydrogenation......Page 435
3.1.4.2 Mechanism......Page 436
3.1.4.3 Regio- and Stereo-Selectivity......Page 437
3.1.5.3 Conjugated Diene Mechanisms......Page 438
3.1.5.4 Allenes and Cumulenes......Page 439
3.1.6.1 Structure - Reactivity......Page 441
3.1.6.3 Stereochemistry......Page 442
3.1.7.1 Regioselectivity......Page 443
3.1.8.2 Conjugated Functional Groups......Page 444
3.1.10 References......Page 445
3.2.1 Hydrogenation of Nonconjugated C=C Bonds......Page 448
3.2.2.2 Dienes and Trienes to Alkenes by 1,2-Reduction......Page 454
3.2.2.3 Dienes to Alkenes by 1,4-Reduction......Page 456
3.2.2.4 Hydrogenation of C=C Bonds Conjugated with Aromatic Rings, CN, CO, CO_2 R, etc.......Page 457
3.2.3 Hydrogenation of Aromatic and Heteroaromatic Rings......Page 458
3.2.4.1 Reduction of C tbond C Bonds to Saturated Hydrocarbons......Page 461
3.2.4.3 Reduction of C tbond C Bonds to cis-Alkenes......Page 462
3.2.4.4 Reduction of C tbond C Bonds to trans-Alkenes......Page 463
3.2.5.1 Chiral Catalysts......Page 464
3.2.5.2 Asymmetric Hydrogenation of Enamides and Related Substrates......Page 465
3.2.5.3 Asymmetric Hydrogenation of Acrylic Acids and Esters......Page 466
3.2.5.4 Asymmetric Hydrogenation of Allylic Alcohols......Page 467
3.2.6 References......Page 468
3.3.1 Introduction......Page 475
3.3.2.3 Mechanism of Reduction by Diimide......Page 476
3.3.2.4 Scope and Limitations......Page 480
3.3.3.2 Mechanisms of Dissolving Metal Reductions......Page 482
3.3.3.3 Scope and Limitations......Page 483
3.3.4.1 Introduction......Page 485
3.3.4.2 Mechanism of the Reduction of C=C and C tbond C by Cr^II......Page 486
3.3.5.2 Mechanism of Metal Hydride - Transition Metal Halide Reductions......Page 487
3.3.5.3 Scope and Limitations......Page 489
3.3.6.2 Mechanism of the Ionic Hydrogenation Reaction......Page 490
3.3.7 References......Page 491
3.4 Partial Reduction of Aromatic Rings by Dissolving Metals and by Other Methods......Page 493
3.4.2 The Birch Reduction......Page 494
3.4.2.1 Experimental Procedures......Page 496
3.4.3.1 Benzenoid Hydrocarbons and Ethers......Page 497
3.4.3.3 Biphenyls, Fluorenes and Fused Polycyclic Hydrocarbons......Page 500
3.4.3.4 Phenols......Page 501
3.4.3.5 Aromatic Amines......Page 502
3.4.3.6 Carboxylic Acids......Page 503
3.4.3.7 Aromatic Carboxylic Esters......Page 509
3.4.3.8 Aromatic Amides......Page 511
3.4.3.9 Aromatic Ketones......Page 512
3.4.3.10 Aryl- and Benzyl-Silanes......Page 517
3.4.3.11 Hydrogenolysis during Birch Reductions......Page 518
3.4.4.1 The Benkeser Reduction......Page 520
3.4.4.4 Reductive Silylations......Page 521
3.4.4.5 Organometallic Procedures......Page 522
3.4.5 References......Page 523
3.5 Partial Reduction of Enones, Styrenes and Related Systems......Page 526
3.5.2.1 Dissolving Metal Reduction......Page 527
3.5.2.2 Reduction with Low-Valent Transition Metals......Page 534
3.5.2.3 Electrochemical Reduction......Page 535
3.5.3 Catalytic Hydrogenation......Page 536
3.5.4.1 Boron Hydrides......Page 539
3.5.4.2 Aluminum Hydrides......Page 544
3.5.4.3 Silicon Hydrides......Page 549
3.5.4.4 Tin Hydrides......Page 550
3.5.5.1 Copper Hydrides......Page 551
3.5.5.2 Iron Hydrides......Page 553
3.5.6.1 Transfer Hydrogenation Using Alcohols as Hydrogen Donors......Page 554
3.5.6.2 Transition Metal Catalyzed Reductions with Group 14 Metal Hydrides......Page 556
3.5.6.3 Transition Metal Catalyzed Reductions with Other Hydrogen Donors......Page 560
3.5.7.1 Enzymatic Reductions......Page 561
3.5.7.2 Biomimetic Reductions with NAD(P)H Models......Page 564
3.5.8 Miscellaneous Reducing Agents......Page 566
3.5.9.1 Dissolving Metal Reduction......Page 567
3.5.9.2 Catalytic Hydrogenation......Page 568
3.5.9.3 Miscellaneous Reducing Agents......Page 571
3.5.10 References......Page 572
3.6.2.1 Metal Hydride Reductions......Page 582
3.6.2.3 Reduction with Sodium Dithionite......Page 592
3.6.2.4 Reduction with Formic Acid......Page 593
3.6.2.5 One-Electron Reduction......Page 594
3.6.3 Hydrogenation......Page 600
3.6.4 References......Page 603
3.7 Partial and Complete Reduction of Pyrroles, Furans, Thiophenes and Their Benzo Analogs......Page 606
3.7.2.1 Catalytic Hydrogenation......Page 607
3.7.2.2 Dissolving Metals and Metals in Acid......Page 608
3.7.3.1 Catalytic Hydrogenation......Page 609
3.7.3.2 Dissolving Metals......Page 610
3.7.4.1 Catalytic Hydrogenation......Page 611
3.7.4.2 Dissolving Metals......Page 612
3.7.4.3 Ionic Hydrogenation......Page 613
3.7.4.5 Miscellaneous Methods......Page 614
3.7.5.1 Catalytic Hydrogenation......Page 615
3.7.5.2 Dissolving Metals and Metals in Acid......Page 617
3.7.5.3 Boron Hydrides and Related Methods......Page 619
3.7.6 Reduction of Benzo[b]Furans......Page 627
3.7.6.1 Catalytic Hydrogenation......Page 628
3.7.6.2 Dissolving Metals......Page 629
3.7.6.3 Boron Hydrides and Related Methods......Page 630
3.7.6.4 Miscellaneous Methods......Page 631
3.7.7.2 Dissolving Metals......Page 632
3.7.8 References......Page 633
3.8 Partial and Complete Reduction of Heterocycles Containing More Than One Heteroatom......Page 637
3.8.2.1 Five-Membered Ring Systems......Page 638
3.8.2.2 Six-Membered Ring Systems......Page 642
3.8.3.1 Five-Membered Ring Systems......Page 646
3.8.3.2 Six-Membered Ring Systems......Page 654
3.8.4.1 Five-Membered Ring Systems......Page 658
3.8.4.2 Six-Membered Ring Systems......Page 660
3.8.5.1 Dioxolanes, Dioxanes, Dithioles and Benzodithioles......Page 661
3.8.6.1 Triazoles, Triazolium Salts and Benzotriazoles......Page 663
3.8.7.1 Oxadiazoles and Benzoxadiazoles......Page 665
3.8.8 References......Page 666
3.9.1 Introduction......Page 669
3.9.2 Mechanistic Aspects......Page 670
3.9.2.1 Thermodynamic Considerations......Page 671
3.9.2.2 Detailed Mechanism of Hydrometallation......Page 673
3.9.3.1 Synthesis, Structure and Properties of Reagents......Page 677
3.9.3.2 Hydrozirconation of Alkenes and Alkynes......Page 678
3.9.3.3 Selectivity Issues......Page 685
59299_v08_03_09b.pdf......Page 691
3.9.3.4 Synthetic Utilization of Hydrozirconation......Page 692
3.9.4.1 Hydrometallation with Other Transition Metals......Page 697
3.9.4.2 Catalytic Hydrometallation with Main Group Metals......Page 699
3.9.5 References......Page 701
3.10.1.1 Introduction......Page 705
3.10.1.2 Fundamentals of the Hydroboration Reaction......Page 706
3.10.2.1 Hydroboration with Boran - Tetrahydrofuran......Page 707
3.10.2.2 Hydroboration with Other Sources of Borane......Page 710
3.10.3.1 Hydroboration with Thexylborane and Other Alkyl- and Aryl-Boranes......Page 711
3.10.3.2 Hydroboration with Monohaloboranes......Page 712
3.10.4.1 General Considerations......Page 714
3.10.4.2 Hydroboration with 9-BBN-H......Page 715
3.10.4.3 Hydroboration with Other Dialkyl- and Diaryl-Boranes......Page 717
3.10.4.4 Hydroboration with Dihaloboranes......Page 720
3.10.4.6 Hydroboration with Catecholborane and Related Compounds......Page 721
3.10.5.1 General Considerations......Page 722
3.10.5.2 Survey of Reactions......Page 723
3.10.7.1 General Considerations......Page 726
3.10.7.2 Protonolysis of Alkylboranes with Carboxylic Acids: Synthesis of Alkanes......Page 727
3.10.7.3 Protonolysis of Alkenylboranes: Synthesis of Alkenes and Dienes......Page 728
3.10.8 References......Page 729
3.11 Hydroalumination of C=C and C tbond C......Page 734
3.11.1.2 Historical Context and Development......Page 735
3.11.1.3 Sources of the Aluminum Hydrides......Page 737
3.11.1.5 Potential of Resulting Organoaluminum Reagents in Organic Synthesis......Page 738
3.11.2.1 Suitable Alkenic Substrates......Page 740
3.11.2.2 Suitable Alkynic Substrates......Page 741
3.11.2.4 Interfering Functional Groups......Page 743
3.11.2.6 Selectivity......Page 745
3.11.2.7 Modifications in the Hydroalumination Process......Page 747
3.11.3.1 Reaction Rates and Kinetic Rate Expressions......Page 748
3.11.3.2 Substituent Effects on Relative Rates of Alkynes......Page 750
3.11.3.4 Stereochemical Effects of Lewis Acids and Bases......Page 751
3.11.3.5 Kinetic Effects of Transition Metals......Page 752
3.11.4.1 Experimental Conditions: Protolysis and Oxidation......Page 754
3.11.4.3 Metallodealumination......Page 755
3.11.4.4 Carbodealumination......Page 756
3.11.4.5 Carbalurnination......Page 757
3.11.5.1 Dienes, Polyenes and Enynes......Page 758
3.11.5.3 Carbocyclizations......Page 759
3.11.6 References......Page 760
3.12.1 Introduction......Page 763
3.12.1.1 Catalysts......Page 764
3.12.1.4 Mechanism......Page 765
3.12.2.1 Hydrosilylation of Acetylene......Page 769
3.12.2.2 Hydrosilylation of Monosubstituted Alkynes......Page 770
3.12.2.3 Hydrosilylation of Disubstituted Alkynes......Page 771
3.12.3 Hydrosilylation of Conjugated Carbon-Carbon Triple Bonds......Page 772
3.12.4.1 Hydrosilylation of Ethylene......Page 773
3.12.4.2 Hydrosilylation of Monosubstituted Alkenes......Page 774
3.12.4.3 Hydrosilylation of Disubstituted and More Highly Substituted Alkenes......Page 776
3.12.5.1 Hydrosilylation of Acyclic Polyenes......Page 778
3.12.5.2 Hydrosilylation of Cyclic Polyenes......Page 780
3.12.6 Hydrosilylation of Conjugated Enones......Page 781
3.12.7 Asymmetric Hydrosilylation of Carbon-Carbon Double Bonds......Page 782
3.12.8.1 Reaction of Vinylsilanes with Electrophiles......Page 785
3.12.8.4 Aldol Reactions......Page 786
3.12.8.5 Synthetic Reactions of Pentafluorosilicates......Page 787
3.12.8.7 Hydrosilylation in the Presence of CO......Page 788
3.12.9 References......Page 789
4.1.1 Introduction and Scope of the Review......Page 793
4.1.3 Catalytic Hydrogenolysis......Page 794
4.1.4.1 Reductions with Metals (Dissolving Metal Method)......Page 795
4.1.4.2 Reduction with Low-Valent Metal Salts......Page 796
4.1.5.1 Tributyltin Hydride......Page 798
4.1.5.3 Other Metal Hydride Reagents......Page 801
4.1.6.1 Reduction with LiAlH_4......Page 802
4.1.6.3 Sodium Borohydride......Page 803
4.1.6.4 Lithium Triethylborohydride......Page 804
4.1.7 Miscellaneous Reduction Procedures......Page 806
4.1.8 References......Page 807
4.2.1 Introduction......Page 810
4.2.2.1 Hydride Reduction Methods......Page 811
4.2.2.2 Catalytic Hydrogenolysis......Page 813
4.2.2.3 Electron Transfer Reductions......Page 814
4.2.2.4 Stannane Reduction of O-Thiocarbonyl Derivatives......Page 817
4.2.2.5 Stannane and Silane Reduction of Esters and Carbonates......Page 823
4.2.3.1 Hydride and Hydrogenolysis Methods......Page 825
4.2.3.2 Deamination via Diazenes and Related Species......Page 827
4.2.3.3 Reduction of Isonitriles and Related Compounds......Page 829
4.2.4 References......Page 831
4.3.1.1 Introduction......Page 833
4.3.1.2 Raney Nickel and Nickel(0) Complexes......Page 834
4.3.1.3 Hydrides or Organometallics Combined with Transition Metal Salts or Their Complexes......Page 837
4.3.1.4 Metals and Amalgams......Page 840
4.3.1.5 Tin Hydrides......Page 843
4.3.2.2 Raney Nickel......Page 845
4.3.2.4 Alkali Metals......Page 846
4.3.2.6 Miscellaneous Deselenations......Page 847
4.3.3.1 Protonolysis......Page 848
4.3.3.2 Metal Hydride Demercuration......Page 849
4.3.3.3 Miscellaneous Methods......Page 855
4.3.4.1 Reduction of Tervalent Organophosphorus Compounds......Page 856
4.3.4.2 Reduction of Tetravalent Organophosphorus Compounds......Page 858
4.3.4.3 Reduction of Pentavalent Organophosphorus Compounds......Page 861
4.3.5 References......Page 863
4.4.2 Reduction of Epoxides to Alcohols......Page 869
4.4.2.1 Metal Hydrides......Page 870
4.4.2.2 Dissolving Metals......Page 878
4.4.2.3 Hydrogenolysis......Page 879
4.4.2.4 Miscellaneous......Page 881
4.4.3 Deoxygenation of Epoxides......Page 882
4.4.3.1 Phosphorus Reagents......Page 883
4.4.3.2 Silicon and Tin Reagents......Page 884
4.4.3.3 Selenium and Tellurium Reagents......Page 885
4.4.3.4 Low-Valent Metals......Page 886
4.4.3.6 Miscellaneous......Page 888
4.4.4 References......Page 889
4.5.1 Hydrogenolysis of the Carbon-Halogen Bond in Vinyl Halides......Page 892
4.5.1.1 Hydrogenolysis of Vinylic Fluorides......Page 893
4.5.1.2 Hydrogenolysis of Vinylic Chlorides......Page 894
4.5.1.3 Hydrogenolysis of Vinylic Bromides......Page 896
4.5.1.4 Hydrogenolysis of Vinylic Iodides......Page 897
4.5.2.1 General......Page 898
4.5.2.2 Hydrogenolysis of Aryl Fluorides......Page 900
4.5.2.3 Hydrogenolysis of Aryl Chlorides......Page 901
4.5.2.4 Hydrogenolysis of Aryl Bromides......Page 903
4.5.2.5 Hydrogenolysis of Aryl Iodides......Page 905
4.5.3.2 Hydrogenolysis of Phenols and Their Derivatives......Page 907
4.5.4 Hydrogenolysis of Trigonal Carbon-Sulfur Bonds......Page 910
4.5.5.1 Hydrogenolysis of Enamines......Page 912
4.5.5.3 Hydrogenolysis of Arenediazonium Salts......Page 913
4.5.6 References......Page 918
4.6.1 Introduction......Page 920
4.6.3 Reduction and Subsequent Dehydration......Page 921
4.6.4 Reductive Elimination of alpha-Substituted Ketones......Page 922
4.6.5.1 Vinyl Esters......Page 927
4.6.5.2 Vinyl Ethers......Page 931
4.6.5.3 Vinyl Halides......Page 934
4.6.5.4 Enamines......Page 935
4.6.6 Reductive Elimination of Hydrazone Derivatives......Page 936
4.6.6.1 Formation of Arenesulfonylhydrazones......Page 937
4.6.6.2 The Aprotic Bamford-Stevens Reaction......Page 938
4.6.6.3 The Protic Bamford-Stevens Reaction......Page 940
4.6.6.4 The Shapiro Reaction......Page 941
4.6.7.1 Quinones to Arenes......Page 946
4.6.7.2 Ketones and 1,2-Diketones to Alkynes......Page 947
4.6.8 References......Page 948
4.7.1 Introduction......Page 951
4.7.2.1 Hydrogenolysis over Palladium with Molecular Hydrogen......Page 952
4.7.2.2 Hydrogenolysis over Palladium with Other Hydride Sources......Page 954
4.7.2.4 Hydrogenolysis over Raney Nickel......Page 959
4.7.3.1 Lithium Aluminum Hydride......Page 961
4.7.3.3 Sodium Borohydride......Page 963
4.7.3.5 Other Hydride Reducing Agents......Page 965
4.7.4.1 Lithium and Sodium in Liquid Ammonia......Page 967
4.7.4.2 Other Metals......Page 968
4.7.5 Electrolytic Reduction Processes......Page 970
4.7.6 Biomimetic Reducing Agents......Page 973
4.7.8 Miscellaneous Reducing Agents......Page 974
4.7.9 References......Page 975
4.8 Reduction of alpha-Substituted Carbonyl Compounds-CX-CO-to Carbonyl Compounds-CH-CO-......Page 978
4.8.1.2 Mechanisms of Bond Cleavage......Page 979
4.8.2.1 Reduction by Electron Transfer......Page 980
4.8.2.2 Reduction by Strong Nucleophiles......Page 983
4.8.3.1 Reduction by Electron Transfer......Page 986
4.8.4.1 Reduction by Electron Transfer......Page 988
4.8.6 The Carbon-Carbon Bond......Page 990
4.8.8 References......Page 991
A......Page 993
B......Page 996
C......Page 1002
D......Page 1006
E......Page 1009
F......Page 1010
G......Page 1013
H......Page 1017
59299_v08_aindxb.pdf......Page 1021
I......Page 1022
J......Page 1023
K......Page 1025
L......Page 1030
M......Page 1033
N......Page 1040
O......Page 1043
P......Page 1045
R......Page 1048
59299_v08_aindxc.pdf......Page 1049
S......Page 1052
T......Page 1060
V......Page 1064
W......Page 1066
Y......Page 1069
Z......Page 1071
A......Page 1072
B......Page 1079
C......Page 1085
D......Page 1092
E......Page 1095
F......Page 1097
G......Page 1098
H......Page 1099
I......Page 1102
K......Page 1105
L......Page 1107
M......Page 1109
N......Page 1110
O......Page 1112
P......Page 1114
Q......Page 1120
R......Page 1121
S......Page 1123
T......Page 1127
V......Page 1130
Z......Page 1131




نظرات کاربران