ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Combustion Chemistry and the Carbon Neutral Future. What will the Next 25 Years of Research Require?

دانلود کتاب شیمی احتراق و آینده کربن خنثی 25 سال آینده تحقیقات به چه چیزی نیاز دارد؟

Combustion Chemistry and the Carbon Neutral Future. What will the Next 25 Years of Research Require?

مشخصات کتاب

Combustion Chemistry and the Carbon Neutral Future. What will the Next 25 Years of Research Require?

ویرایش:  
نویسندگان:   
سری: Developments in Physical & Theoretical Chemistry 
ISBN (شابک) : 9780323992138 
ناشر: Elsevier 
سال نشر: 2023 
تعداد صفحات: [666] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 31 Mb 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Combustion Chemistry and the Carbon Neutral Future. What will the Next 25 Years of Research Require? به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب شیمی احتراق و آینده کربن خنثی 25 سال آینده تحقیقات به چه چیزی نیاز دارد؟ نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب شیمی احتراق و آینده کربن خنثی 25 سال آینده تحقیقات به چه چیزی نیاز دارد؟

با افزایش تقاضا برای انتقال به وسایل نقلیه تمیزتر، کارآمدتر، کاهش‌یافته و بدون انتشار کربن، تمرکز سنتی تحقیقات شیمی احتراق برای کمک به ارائه راه‌حل‌هایی برای این مسائل معاصر گسترش یافته و تطبیق می‌یابد. شیمی احتراق و آینده بدون کربن، راهنمایی برای تحقیقات فعلی در این زمینه و کاوش در گام های احتمالی آینده را ارائه می دهد، زیرا ما به سمت شیمی احتراق کربن پاک تر، سبزتر و کاهش یافته حرکت می کنیم. با شروع بحث در مورد شیمی انتشار و شیمی مصرف سوخت سنتی، این کتاب به بحث در مورد طیف وسیعی از سوخت‌های جایگزین، از جمله هیدروژن، آمونیاک، الکل‌های کوچک و سوخت‌های هیدروکربنی سنتز شده می‌پردازد. سپس روش‌هایی برای پیش‌بینی و بهبود کارایی و پایداری، مانند دمای پایین و احتراق کاتالیزوری، حلقه‌های شیمیایی، و مدل‌سازی و نظارت جنبشی بررسی می‌شوند. ترکیب دانش و تجربه یک تیم بین‌رشته‌ای از متخصصان در این زمینه، شیمی احتراق و کربن Free Future یک راهنمای روشنگر برای مناطق تمرکز فعلی و آینده برای محققان شیمی احتراق در راستای گذار به فناوری های سبزتر و پاک تر است.


توضیحاتی درمورد کتاب به خارجی

As the demands of transitioning to cleaner, more efficient, reduced and zero carbon emitting vehicles increase, the traditional focus of Combustion Chemistry research is stretching and adapting to help provide solutions to these contemporary issues. Combustion Chemistry and the Carbon Free Future presents a guide to current research in the field and an exploration of possible future steps as we move towards cleaner, greener and reduced carbon combustion chemistry. Beginning with a discussion of emissions chemistry and the chemistry of traditional fuel consumption, the book goes on to discuss a range of alternative fuels, including hydrogen, ammonia, small alcohols, and synthesized hydrocarbon fuels. Methods for predicting and improving efficiency and sustainability, such as low temperature and catalytic combustion, chemical looping, and kinetic modelling and monitoring, are then explored.Combining the knowledge and experience of an interdisciplinary team of experts in the field, Combustion Chemistry and the Carbon Free Future is an insightful guide to current and future focus areas for combustion chemistry researchers in line with the transition to greener, cleaner technologies.



فهرست مطالب

Front Cover
Combustion Chemistry and the Carbon Neutral Future: What will the Next 25 Years of Research Require?
Copyright
Contents
Contributors
Introduction
	References
Chapter 1: Combustion emissions, internal combustion engines and greenhouse gases
	1. Introduction
	2. Transportation energy requirements
	3. Reducing greenhouse gas emissions from internal combustion engines
		3.1. Approaches to reaching GHG targets
		3.2. Challenges of using renewable fuels in medium- and heavy-duty engines
			3.2.1. Intake charge preparation
			3.2.2. Variable valve actuation
			3.2.3. Fuel injection effects
			3.2.4. Fuel reactivity effects on GCI
	4. Conclusions and future directions
	References
Chapter 2: Soot research: Relevance and priorities by mid-century
	1. Will soot research be relevant in the next few decades?
	2. The lingering challenge of soot nucleation
	3. Laminar flames as the preferred setting for soot studies
	4. Diagnostics
		4.1. Sampling-based diagnostics
			4.1.1. Molecular Beam (MB) sampling coupled with Mass Spectrometry (MS)
			4.1.2. Capillary sampling followed by chemical analyses of stable species
				Gas Chromatographic (GC) analyses
			4.1.3. Dilution sampling and collision charging followed by high-resolution ``aerosol´´ analyses
				High-Resolution Differential Mobility Analysis (HR-DMA)
				Atmospheric pressure intake mass spectrometry
			4.1.4. Thermophoretic sampling
		4.2. Optical diagnostics
			4.2.1. Multiwavelength pyrometry
			4.2.2. Laser Light Scattering (LLS) and Light Extinction (LE)
			4.2.3. Laser-Induced Incandescence (LII)
	5. Flame selection criteria
		5.1. Burner-stabilized flat premixed flames
		5.2. Laminar diffusion flames
			5.2.1. The self-similar counterflow diffusion flames
	6. Exemplars of tracking soot nucleation in flames
		6.1. Counterflow diffusion flame under incipiently sooting conditions
		6.2. Filling the gaps in nucleation in premixed flames
	7. Computational modeling
	8. Summary and research needs in the next few decades
	Acknowledgments
	References
Chapter 3: Natural gas for combustion systems
	1. Introduction
	2. Sources of natural gas
		2.1. Biogas
		2.2. Power to gas (PtG)
	3. Relevant research
		3.1. Chemistry
		3.2. Transportation
		3.3. Power generation
	4. Research synopsis-What will the next 25years of research require?
	5. Conclusion
	References
Chapter 4: Sustainable bio-oxygenate fuels
	1. Introduction
	2. A possible solution, bio-oxygenate fuels produced from plant material
	3. Basics of fuel chemical kinetics
	4. Fuels from biomass
	5. Early kinetic modeling
	6. Small alcohols, methanol and ethanol
	7. Larger alcohols
	8. Accidental discovery of O atoms in the fuel as an inhibitor of sooting
	9. Introduction of methyl and ethyl esters as fuels
	10. Epilog and conclusions
	11. Whats next?
	Acknowledgments
	References
Chapter 5: A comprehensive perspective on a promising fuel for thermal engines: Syngas and its surrogates
	1. Introduction
	2. Syngas: An alternative fuel for thermal engines
	3. The performance and efficiency of syngas-fueled engines
		3.1. Dual-fuel (diesel-syngas) CI engines
		3.2. HCSI engines
		3.3. DISI engines
	4. The pollutants formation and emissions of syngas fueled-engines
		4.1. Dual-fuel (diesel-syngas) CI engines
		4.2. HCSI engines
		4.3. DISI engines
	5. Concluding remarks and future research
	Conflict of interest
	References
Chapter 6: Hydrogen, the zero carbon fuel
	1. Introduction
	2. Hydrogen internal combustion engines for road transportation
	3. Propagation of hydrogen flames
	4. Hydrogen-oxygen combustion mechanism overview
	5. Another type of practical engine: The detonation engine
	6. A potential alternative to combustion engines: Hydrogen fuel cells
	7. A very practical consideration: Hydrogen storage
	8. Conclusions and directions for research in the next 25years (or sooner)
		8.1. For internal combustion engines
		8.2. For flames
		8.3. For chemistry
		8.4. For detonation engines
		8.5. For hydrogen storage
	References
Chapter 7: Ammonia as an alternative
	1. Introduction
		1.1. Ammonia production
		1.2. Ammonia storage
		1.3. Ammonia supply
	2. Ammonia market
		2.1. Key players per region
		2.2. Key players per country
		2.3. Key companies
	3. Ammonia as an ICE fuel
	4. Ammonia as a power vector
	5. Economic analysis
		5.1. Ammonia production
		5.2. Electricity production from ammonia
	6. Environmental analysis
	7. Conclusions and future research
	Acknowledgments
	References
Chapter 8: Small alcohols as biofuels:Status and needs forexperimental data, theoretical calculations, and ch
	1. Introduction
	2. Small alcohol fuels
		2.1. Methanol
		2.2. Ethanol
		2.3. Propanols
		2.4. Butanols
		2.5. Pentanols
	3. Recommendations for future work and future directions
		3.1. Methanol
		3.2. Ethanol
		3.3. Propanols
		3.4. Butanols
		3.5. C5 branched alcohols
	4. Summary and recommendations
	Acknowledgments
	References
Chapter 9: Fischer-Tropsch and other synthesized hydrocarbon fuels
	1. Background
		1.1. History
		1.2. Fuel production and characteristics
		1.3. Fischer-Tropsch fuel properties
	2. Survey of engine performance and emissions impacts of F-T fuels
		2.1. Engine performance
		2.2. Engine emissions
	3. Diesel combustion studies of F-T fuels and impacts on soot characteristics
		3.1. Experimental
		3.2. Case studies on the impact of fuels and operating conditions on engine performance, combustion process and emissions
		3.3. The impact of fuels on soot nanostructure and reactivity
	4. F-T fuel impacts on advanced diesel combustion processes
		4.1. Heat release rate
		4.2. NOx emissions
		4.3. CO and UHC emissions
		4.4. THC-NOx trade-off
		4.5. Filter smoke number
		4.6. PM emissions
		4.7. Particle size distribution
		4.8. BSFC and BTE
		4.9. Soot reactivity analysis
		4.10. Soot surface area analysis
		4.11. X-ray diffraction
		4.12. X-ray photoelectron spectroscopy
		4.13. Raman spectroscopy
		4.14. Transmission electron microscopy
		4.15. Summary
	5. Concluding remarks and future directions
	References
Chapter 10: Low temperature combustion
	1. Introduction
		1.1. Low temperature combustion concept in advance engines
		1.2. Low temperature flames (cool flame and warm flame)
		1.3. Low temperature combustion chemistry
	2. Dynamics of low temperature flames
		2.1. Premixed cool flame, warm flame, and double flame
		2.2. Non-premixed cool flames and warm flames
			2.2.1. Droplet cool flames and warm flames
			2.2.2. Counterflow cool flames and warm flames
			2.2.3. Spherical cool flames
		2.3. Autoignition assisted cool flame
	3. Low temperature combustion chemistry at high pressure
	4. Summary and future research
	References
Chapter 11: Supercritical CO2 fluid combustion
	1. Introduction
		1.1. Direct-fired supercritical CO2 power cycles
	2. Modeling consideration
		2.1. The equation of state (EOS)
		2.2. The compressibility factor (Z)
		2.3. Specific heat capacities
		2.4. Viscosity modeling
		2.5. Thermal conductivity modeling
	3. Experimental validations
		3.1. Density of supercritical mixtures
		3.2. Speed of sound in supercritical mixtures
	4. Research outlook
	References
Chapter 12: Catalytic combustion for cleaner burning: Innovative catalysts for low temperature diesel soot abatement
	1. Introduction
	2. Recent advances in catalysts for soot oxidation
		2.1. Ceria-based catalysts
		2.2. Other transition metal oxides (TMOs)
			2.2.1. Spinel based catalysts
			2.2.2. Hydrotalcite based catalysts
			2.2.3. Perovskite based catalysts
			2.2.4. Delafossite based catalysts
			2.2.5. Other single metal oxides or mixed metal oxides
		2.3. Monolith based catalysts
	3. Reactor configurations for soot removal with catalytic ``NTP´´
	4. Catalytic species typically proposed for the abatement of soot in NTP reactors
	5. Soot removal efficiency in the NTP catalytic reactor
	6. Conclusions and future directions
	References
Chapter 13: Advances in chemical looping combustion technology
	1. Introduction
	2. An overview of the latest chemical looping platforms
	3. Material development
		3.1. Materials for chemical looping combustion (CLC)
			3.1.1. Iron-based oxygen carriers
			3.1.2. Copper-based oxygen carriers
			3.1.3. Manganese-based oxygen carriers
			3.1.4. Nickel-based oxygen carriers
		3.2. Materials for chemical looping hydrogen generation (CLHG)
	4. Process intensification
		4.1. Reactor design
		4.2. Process optimization and operational strategies
	5. Conclusions and future research
	References
Chapter 14: Chemistry diagnostics for monitoring
	1. Introduction: Only 25 years
	2. Methodology: Teaming up
	3. Results: 1+13 visions
		3.1. Alison M. Ferris: Sensor innovations for omnivorous energy and propulsion systems
			3.1.1. Status 2021: Shock tubes and optical diagnostics
			3.1.2. Preview for 2026: Cleaner fuels, property prescreening and performance prediction
			3.1.3. 2030 and beyond: Sensors for energy and propulsion systems using various low-carbon fuels
		3.2. Johan Zetterberg: Combinations-A seed for change?
			3.2.1. Status 2021: Cross-fertilization from combustion diagnostics to catalytic processes
			3.2.2. Preview for 2026: Combining gas-phase chemistry diagnostics and surface science
			3.2.3. 2030 and beyond: Synergy and collaborative research to achieve carbon neutrality
		3.3. Deanna A. Lacoste: Diagnostics of charged and excited species in combustion
			3.3.1. Status 2021: Analyzing plasma-enhanced combustion
			3.3.2. Preview for 2026: Diagnostic needs in systems with charged and excited particles
			3.3.3. 2030 and beyond: Combinative diagnostics for ``augmented´´ combustion systems
		3.4. Peter Fjodorow: Intracavity absorption spectroscopy: Combining robustness with highly-sensitive and broadband detection
			3.4.1. Status 2021: Ultra-high-sensitivity diagnostics for chemical species
			3.4.2. Preview for 2026: Developments for the mid-infrared regime
			3.4.3. Beyond 2030: Miniaturization for broad-band, time-resolved, high-sensitivity multi-parameter measurements
		3.5. Steven Wagner: Bringing light to complex reactive processes
			3.5.1. Status 2021: Multiplex absorption sensors for industrial applications
			3.5.2. Preview for 2026: Robust sensor development for complex chemical compositions is not only a hardware issue
			3.5.3. 2030 and beyond: Spectroscopy needs advanced data evaluation strategies
		3.6. Liming Cai: Future model development driven by advanced combustion diagnostics
			3.6.1. Status 2021: Theory-informed and data-driven model development
			3.6.2. Preview for 2026: Toward accurate uncertainty assessment
			3.6.3. 2030 and beyond: Identifying the most informative experiments
		3.7. Charlotte Rudolph: Flexible polygeneration and exergy storage: A glimpse into the future from a modeling perspective
			3.7.1. Status 2021: The combustion engine as a flexible chemical reactor
			3.7.2. Preview for 2026: Process control in a polygeneration process
			3.7.3. 2030 and beyond: Combinative in situ measurements enable automatic selection of optimum operation conditions
		3.8. Judit Zádor: Theoretical chemistry in combustion diagnostics
			3.8.1. Status 2021: The interplay of chemistry diagnostics and theoretical chemistry
			3.8.2. Preview for 2026: Resolving isomers and conformers with the aid of experiments and theory
			3.8.3. 2030 and beyond: Theory, experiment and data strategies combined
		3.9. Yuyang Li: Chemistry diagnostics and control of low-carbon fuels for the upcoming carbon-neutral era
			3.9.1. Status 2021: Diagnostics for reactivity control
			3.9.2. Preview for 2026: Diagnostics for unconventional, low-carbon fuels
			3.9.3. 2030 and beyond: Chemistry diagnostics for and beyond combustion
		3.10. Lena Ruwe: Gaining knowledge on fuel-specific gas-phase reactions using molecular-beam mass spectrometry
			3.10.1. Status 2021: Mass spectrometry to analyze fuel-structure-dependent reaction chemistry
			3.10.2. Preview for 2026: In-depth chemical diagnostics to identify pathways to undesired emissions
			3.10.3. 2030 and beyond: Automatic data generation and analysis for combustion and beyond
		3.11. Nina Gaiser: Alternative fuel combustion and prospects for PEPICO spectroscopy
			3.11.1. Status 2021: Using PEPICO to understand oxymethylene ether combustion
			3.11.2. Preview for 2026: Analyzing alternative fuel combustion for practical applications
			3.11.3. 2030 and beyond: Future fields for PEPICO diagnostics
		3.12. Zhandong Wang: Detective work with advanced techniques: How to identify and measure previously elusive species
			3.12.1. Status 2021: Low-temperature chemistry diagnostics
			3.12.2. Preview for 2026: Coupling advanced mass spectrometry with high-pressure reactors
			3.12.3. 2030 and beyond: Combinative diagnostics for elusive species
		3.13. Klaus Peter Geigle: Chemistry diagnostics to resolve phenomena in soot-forming combustion processes
			3.13.1. Status 2021: Laser diagnostics to probe particulate formation
			3.13.2. Preview for 2026: Probing soot formation for an extended fuel spectrum
			3.13.3. 2030 and beyond: Adapting present diagnostics to demands for a carbon-neutral future
	4. Conclusions: The clock is ticking
	Acknowledgments
	References
Chapter 15: High-pressure spectroscopy and sensors for combustion
	1. Motivation for high-pressure combustion and its role in pathway to carbon neutrality
	2. Challenges for high-pressure spectroscopy and sensing
		2.1. Collisional processes
		2.2. Collisional broadening
		2.3. Line mixing
	3. Laser absorption strategies for high-pressure sensing
		3.1. Narrowband LAS diagnostics
		3.2. Broadband LAS diagnostics
		3.3. Research needs for the next 25 years
	References
Chapter 16: Bio-derived sustainable aviation fuels-On the verge of powering our future
	1. Overview
	2. Why bio-fuels?
	3. Overview of bio-derived jet fuels
		3.1. Overview of fuel properties requirements
		3.2. Overview of bio-derived jet fuels production-pathways
			3.2.1. Hydroprocessing of oil-to-jet (OTJ) fuel
			3.2.2. Oligomerization of alcohol-to-jet (ATJ) fuel
			3.2.3. Direct sugar to hydrocarbon (DSHC) fuel
			3.2.4. Fischer-Tropsch biomass-to-fuel pathway
			3.2.5. Lignin to jet fuel pathway
		3.3. Feedstock overview for bio-derived sustainable jet fuel production
			3.3.1. First-Gen feedstock
			3.3.2. Second-Gen feedstock
			3.3.3. Third-Gen feedstock
			3.3.4. Fourth-Gen feedstock
	4. Limitations and challenges for the bio-jet fuels
		4.1. Commercialization challenges
		4.2. Meeting properties requirements and certification of aviation fuels
		4.3. Ignition properties-influence of combustion chemistry
		4.4. Retro fits requirement for meeting bio-jet fuel properties
	5. Bio-derived sustainable aviation fuels: Current trends and future opportunities
		5.1. Promising feedstock advances for BSAFs
			5.1.1. Current trends
			5.1.2. Future opportunities
		5.2. Promising BSAF production pathway advances
			5.2.1. Current trends
			5.2.2. Future opportunities
		5.3. Innovative policies for BSAFs and their outlook
		5.4. BSAF property and operational characteristic improvements: Fuel additives
			5.4.1. Current status
			5.4.2. Future opportunities
		5.5. BSAF property and operational characteristic improvements: Understanding ignition properties
			5.5.1. Current status: Data-driven model development
			5.5.2. F24-ATJ blends
			5.5.3. F-24 submechanism
			5.5.4. ATJ submechanism
			5.5.5. Future opportunities: Reference mechanisms of pure components and blending
			5.5.6. Future opportunities: Generalization and extension of HyChem style models
			5.5.7. Future opportunities: Improvement of low-temperature chemistry and optical diagnostics
		5.6. BSAF fuel property sensing
			5.6.1. Current status
			5.6.2. Future opportunities: Robust models for property sensing including FG based models
			5.6.3. Future opportunities: Low cost and miniaturized sensors enabling on board control
		5.7. Prospective opportunities for BSAFs in advanced propulsion
			5.7.1. Rocket/missile fuel
	6. Summary and concluding remarks
	Acknowledgments
	References
Chapter 17: Using combustion synthesis to convert emissions into useful solid materials
	1. Introduction
	2. Results and discussion
		2.1. Carbon nanotube (CNT) growth [H2, CO, C2H2]
			2.1.1. Probing air/methane inverse diffusion flame with metal alloy substrates
			2.1.2. Probing methane/air counterflow diffusion flame with metal alloy substrate
		2.2. Few-layer graphene film growth [H2, CxHy, Cn, CO]
		2.3. Transition from CNT to graphene growth on metals [CO, C2H2]
		2.4. Transition from CNT to graphene growth on metal oxides [H2, CO, C2H2]
		2.5. Monolayer graphene (MLG) film growth [H2, CH4, CH2]
		2.6. Metal-oxide nanowire growth [CO, H2O, CO2]
		2.7. Transition from metal-oxide nanocrystal growth to CNT growth [H2, CO, H2O, CO2]
	3. Conclusions and future directions
	Acknowledgments
	References
Index
Back Cover




نظرات کاربران