دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Prashant Kesharwani (editor)
سری:
ISBN (شابک) : 0323858732, 9780323858731
ناشر: Academic Press
سال نشر: 2022
تعداد صفحات: 436
[437]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب Combination Drug Delivery Approach as an Effective Therapy for Various Diseases به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رویکرد تحویل داروی ترکیبی به عنوان یک درمان موثر برای بیماریهای مختلف نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
رویکرد تحویل داروی ترکیبی به عنوان یک درمان مؤثر برای بیماریهای مختلف استفاده از ابزارهای مهندسی زیستی را در رویکردهای دارورسانی ترکیبی برای کنترل بیماریهای مختلف در مراحل بالینی مختلف عمل سینرژیک، مکانیسمهای مختلف بررسی میکند. عمل، و در طول سرکوب مقاومت دارویی. این کتاب دانش بنیادی را در مورد جنبه های تجربی و تجربی رویکردهای ترکیبی دارو به منظور تجهیز برنامه های کاربردی منطقی در جلوگیری از ظهور مقاومت در طول درمان بیماری های مختلف ارائه می دهد. این یک درک جامع از اصول تشکیل، خصوصیات، کاربردها، مقررات، سمیت، چالش ها و چشم اندازهای آینده رویکردهای تحویل داروی ترکیبی را ارائه می دهد.
محققان و دانشجویان فارغ التحصیل پیشرفته در علوم دارویی، شیمی، زیست شناسی و پزشکی و همچنین شرکت های داروسازی و سازمان های علمی مورد علاقه خواهد بود.</ p>
Combination Drug Delivery Approach as an Effective Therapy for Various Diseases explores the use of bioengineering tools in combination drug delivery approaches to control various diseases at different clinical stages of synergistic action, varying mechanisms of action, and during the suppression of drug resistance. The book presents fundamental knowledge on the experiential and experimental aspects of drug combination approaches in order to equip rational applications in preventing the emergence of resistance during the treatment of various diseases. It provides a holistic understanding of the principles behind formation, characterization, applications, regulations, toxicity, challenges and future perspectives of combination drug delivery approaches.
It will be of interest to researchers and advanced graduate students in pharmaceutical science, chemistry, biology and medicine, as well as pharmaceutical companies and scientific organizations.
Front Cover Combination Drug Delivery Approach as an Effective Therapy for Various Diseases Copyright Page Dedication Contents List of contributors Preface Acknowledgments A. Combination drug delivery approaches against various diseases 1 Overcoming cancer drug resistance via nanomedicine-based combined drug delivery 1.1 Introduction 1.2 Organic nanocarriers 1.2.1 Lipid-based systems 1.2.1.1 Liposomal formulations 1.2.1.2 Solid lipid nanoparticles 1.2.1.3 Nanostructured lipid carriers 1.2.1.4 Nanoemulsion 1.2.2 Protein-based nanocarriers 1.2.3 Polymeric nanoparticles 1.3 Inorganic nanocarriers 1.3.1 Iron oxide nanoparticles 1.3.2 Quantum dots 1.3.3 Gold nanoparticles 1.3.4 Mesoporous silica nanoparticles 1.3.5 Carbon-based nanocarriers 1.3.5.1 Graphene 1.3.5.2 Carbon nanotubes 1.4 Conclusion References 2 Overcoming the challenges of drug resistance through combination drug delivery approach 2.1 Introduction 2.2 Drug resistance in cancer 2.2.1 Intrinsic and acquired drug resistance 2.2.2 Mechanisms of drug resistance 2.2.2.1 Elevated drug efflux 2.2.2.2 Tumor microenvironment 2.2.2.3 Enhanced DNA repair 2.2.2.4 Other mechanisms 2.2.3 Combinational drug delivery systems in cancer drug resistance 2.2.3.1 Nanoparticulate drug delivery systems 2.2.4 Combinational therapies via nanoparticulate systems 2.2.4.1 Combination of different chemotherapeutics 2.2.4.2 Combination of chemotherapeutics and sensitizing agents 2.2.4.2.1 P-gp inhibitors 2.2.4.2.2 Autophagy inhibitors 2.2.4.3 Combination of chemotherapeutics and genes 2.2.4.3.1 Plasmid DNA 2.2.4.3.2 RNAs 2.2.4.4 Combination of chemotherapeutics and protein-based molecules 2.2.4.4.1 Antibodies 2.2.4.4.2 Peptides and proteins 2.2.5 Conclusion 2.3 Combination drug delivery approach to overcome antimicrobial resistance 2.4 Conclusion References 3 Combination drug delivery approaches in ophthalmology 3.1 The eye 3.2 The need for new ophthalmic treatments 3.2.1 Increasing prevalence of ocular diseases 3.2.1.1 Age as risk factor 3.2.1.2 Susceptibility to exogenous threats 3.2.1.3 Refractive surgery for myopia 3.2.2 The difficulty of drugs to reach their intraocular target 3.2.3 Adverse ocular effects of topically administered drugs 3.3 Drug–device combinations in ophthalmology 3.3.1 Drug–device combinations for glaucoma 3.3.2 Drug–device combinations for surgeries 3.3.3 Drug–device combinations for ocular infections and inflammations 3.3.4 Drug–device combinations for dry eye disease 3.4 Challenges and future perspectives References 4 Combination drug delivery system to enhance the transdermal drug delivery of bioactive molecules 4.1 Introduction 4.2 Physiological skin row versus percutaneous permeation of bioactive molecules 4.3 Strategies used to enhance transdermal transport 4.4 Physical parameters of permeability of lipid vesicles 4.5 Conclusions Acknowledgments References 5 Combination drug delivery approaches in rheumatoid arthritis 5.1 Introduction 5.1.1 Drugs for conventional therapy 5.2 Nanoparticles for rheumatoid arthritis therapy 5.3 siRNA and miRNA for rheumatoid arthritis therapy 5.4 Combinatory therapy for gene and drug delivery 5.4.1 Liposome-based hybrid nanocarrier 5.4.2 Polymeric micelle 5.4.3 Nanoparticle loaded hydrogel 5.4.4 Microspheres 5.4.5 Lipid nanoparticles 5.4.6 Dendrimer nanoparticle complex 5.5 Challenges and future perspectives 5.6 Conclusion Disclosures Acknowledgments References 6 Aptamer-mediated drug delivery system for cardiovascular diseases 6.1 Introduction 6.2 Conventional drug delivery systems for cardiovascular diseases 6.2.1 Extracellular vesicles 6.2.2 Polymers 6.2.3 Ultrasound-mediated drug delivery system 6.3 Aptameric drug delivery systems for cardiovascular diseases 6.3.1 Liposomes 6.3.2 Micelles 6.3.3 Dendrimers 6.3.4 Other nanoparticles 6.4 Future perspective 6.5 Conclusion References 7 Combination drug delivery approaches for viral infections 7.1 Introduction 7.2 Combination drug therapy to counter various viral infections 7.2.1 Respiratory viral infection 7.2.1.1 Influenza viral infections 7.2.1.1.1 Influenza-A (IAV) 7.2.1.1.2 Other influenza viral infections 7.2.1.2 Rhino viral infection 7.2.1.3 Corona viral infections 7.2.2 Viral skin infections 7.2.2.1 Herpes simplex viral infection 7.2.2.2 Herpes zoster viral infection 7.2.3 Viral food poisoning 7.2.3.1 Hepatitis viral infections 7.2.4 Viral infections and sexually transmitted infections 7.2.4.1 Genital herpes viral infection 7.2.4.2 Human immunodeficiency virus infection 7.2.4.3 Human papilloma viral infections 7.3 Approach and scope of improvement of combination drug therapy to treat viral infections 7.4 Conclusion and future perspective Acknowledgments References 8 Approaches and molecular tools for targeted drug delivery in malaria infected red blood cells 8.1 What is the mechanism of action of antimalarial drugs? 8.2 Drug resistance is the bottleneck to malaria treatment 8.3 Targeted drug delivery: need of the hour 8.4 Lipid-based drug delivery carriers 8.5 Liposomes 8.6 Nanolipid carriers 8.7 Dendrimers 8.8 Solid lipid nanoparticles 8.9 Nanoemulsions 8.10 Self-microemulsifying drug delivery system 8.11 Nanoparticles as drug carriers 8.12 Peptides as a drug carrier 8.13 Aptamers as drug carriers 8.14 Drug-loaded erythrocytes 8.15 The viral particle as a delivery vehicle References 9 Combination drug delivery approaches for tuberculosis 9.1 Introduction 9.2 Tuberculosis 9.2.1 History and epidemiology 9.2.2 Mechanisms of disease 9.2.3 Current treatment, limitations, and drug resistance 9.3 Formulations and drug delivery routes for tuberculosis treatment 9.3.1 Oral administration 9.3.2 Parenteral administration 9.3.3 Pulmonary administration 9.4 Alternative approaches for drug delivery in tuberculosis disease 9.4.1 Green chemistry approaches 9.4.1.1 Ionic liquids and organic salts 9.4.1.2 Therapeutic liquid mixtures and eutectic solvents 9.4.1.3 Low transition temperature mixtures 9.4.1.4 Supercritical fluid technology 9.5 Exploring combinatorial approaches for effective tuberculosis therapies: perspectives and challenges 9.6 Conclusion Acknowledgments References B. Combination drug delivery approaches against cancer 10 Combination drug delivery approaches for cancer therapy 10.1 Introduction 10.2 Approaches and advantages of combination drug therapy 10.2.1 Radio and chemotherapy 10.2.2 Chemo and immunotherapy 10.2.3 Combination drugs in chemotherapy 10.3 The role of nanocarriers in combination drug delivery approaches 10.3.1 Liposomes 10.3.1.1 Immunoliposomes and long-circulating liposomes 10.3.1.1.1 Example 10.3.2 Dendrimers 10.3.3 Polymeric nanoparticles 10.4 Drug delivery approaches for cancer biology 10.4.1 Breast cancer 10.4.2 Lung cancer 10.4.3 Cervical cancer 10.4.4 Colorectal cancer 10.4.5 Prostate cancer 10.5 Conclusion and future perspective Acknowledgments References 11 Prodrug-based drug delivery approaches in cancer combination therapy 11.1 Introduction 11.2 Prodrugs in cancer therapy 11.3 Prodrug activation mechanism 11.3.1 Prodrugs activated by the tumor microenvironment 11.3.2 Enzyme prodrug therapy 11.3.2.1 EPT with endogenous cancer-specific enzymes Phosphoesterases Matrix metalloproteinases Cathepsin B enzyme β-Glucuronidases Prostate-specific antigen and prostate-specific membrane antigen Human kallikrein 2 β-Galactosidase/glucosidase 11.3.2.2 EPT with nonmammalian enzymes Cytosine deaminase Viral thymidine kinase β-Lactamase Nitroreductase 11.3.3 Enzyme/prodrug delivery strategies 11.3.3.1 Antibody–directed conjugates 11.3.3.2 Antibody-directed enzyme prodrug therapy 11.3.3.3 Gene-directed enzyme prodrug therapy 11.4 Prodrug and nanotechnological applications 11.5 Combination therapy in cancer 11.5.1 Synergistic combination 11.5.1.1 Prodrug–adjuvant 11.5.1.2 Prodrug–polymer conjugates 11.5.1.3 Prodrug–drug combination 11.5.2 Therapy combinations 11.6 Conclusion References 12 Combination of anticancer drugs with microRNA as cancer therapeutics 12.1 Introduction 12.2 MicroRNA as anticancer agent 12.3 Combination of microRNA with anticancer agents a novel tool for cancer therapy 12.4 Nanoparticle used to deliver cancer therapeutics 12.4.1 Gadolinium-functionalized nanographene oxide 12.4.2 Magnetic core–shell nanoparticles 12.4.3 AuCOOH@FA-CS nanogel 12.4.4 PG5K-VE4-DT20 copolymer-based nanoassemblies 12.4.5 Drug-loaded cubosomes 12.4.6 Rod-like drug nanoparticle 12.5 Applications in cancer and other diseases 12.5.1 Cancer 12.5.2 Tissue engineering 12.5.3 Neurodegenerative disorders 12.6 Conclusion Acknowledgment References 13 Nanotechnology-mediated combinational drug delivery approach for cancer therapy 13.1 Introduction 13.2 Need for combinational drug therapy 13.3 Nanotechnology-driven combinational drug delivery 13.3.1 Liposomes 13.3.2 Dendrimers 13.3.3 Polymeric micelle systems 13.3.4 CNTs 13.3.5 Polymer–drug conjugates engineered for combination therapy 13.3.6 NPs 13.3.6.1 Polymeric NPs 13.3.6.2 Magnetic NPs 13.3.6.3 Solid lipid NPs 13.4 Nanotechnology-based sequential combination therapy 13.4.1 Sequential combination therapy with chemicals 13.4.1.1 Combination therapy with chemicals 13.4.1.2 Combination therapy with cell signaling pathway inhibitors 13.4.2 Sequential combination therapy with nucleic acids 13.4.2.1 Small RNAs in sequential combinations 13.4.2.2 Plasmid DNA for sequential combination 13.4.3 Sequential combination with metal nanocomposites 13.4.3.1 Gold NPs 13.4.3.2 Silver NPs 13.4.3.3 Iron oxide NPs 13.4.3.4 Zinc oxide NPs 13.4.4 Sequential release of multiple therapeutic drugs 13.4.4.1 Targeted sequential drug release systems 13.4.4.1.1 Folic acid modified nanocarriers 13.4.4.1.2 Monoclonal antibody-mediated nanocarriers 13.4.4.1.3 RGD peptide-modified nanoformulations 13.4.4.2 Internal stimulus-triggered sequential release 13.4.4.2.1 pH-triggered sequential release 13.4.4.2.2 Enzyme-triggered sequential release 13.4.4.2.3 External stimulus-triggered sequential release 13.5 Conclusion Conflict of interest Acknowledgment References C. Combination drug delivery approaches challenges and future perspectives 14 Premarket review and postmarket regulation of combination drug products 14.1 Introduction 14.1.1 Types of combination drug therapy products 14.2 Market regulations 14.2.1 Premarket authorization pathways 14.3 Device-based combination products 14.4 Drug-based combination product 14.5 Biologic product-based combination product 14.6 Preclinical and clinical development and regulations 14.6.1 Preclinical phase 14.6.1.1 Good laboratory practice 14.6.1.2 Animal models 14.6.1.3 Pharmacokinetic evaluations 14.6.1.4 Toxicity and biocompatibility testing 14.6.1.5 Clinical phases 14.7 Good clinical practice 14.7.1 Phases of clinical trials 14.7.1.1 Phase I 14.7.1.2 Phase II 14.7.1.3 Phase III 14.8 Significant regulatory steps in PMA application process 14.9 FDA postmarket safety monitoring 14.9.1 Postmarket regulatory provisions 14.9.1.1 5-Day report 14.9.1.2 15-Day “alert report” for drugs and biological products 14.9.1.3 30-Day device malfunction report 14.9.1.4 3-Day field alert report 14.9.1.5 Expedited blood fatality report 14.9.2 Postapproval changes 14.10 Conclusion References 15 Concluding remarks and future perspective of combination drug delivery systems 15.1 Introduction 15.2 Rationale for combination therapy 15.2.1 Overcome drug resistance and the role of tumor genetic diversity 15.2.2 Synergism and considerations of combination therapy in cancer treatment 15.2.3 Targeting major oncogenic pathways 15.2.3.1 Vascular endothelial growth factor 15.2.3.2 (PI3K-AKT-mTOR) pathway 15.2.3.3 JAK–STAT pathway 15.2.3.4 Ras/Raf/MEK/ERK pathway 15.2.4 Tumor microenvironment targeting 15.3 Combinations with chemotherapy 15.3.1 Chemo-chemotherapy combination therapy 15.3.2 Chemoradiotherapy combination therapy 15.3.3 Chemo-photothermal combination therapy 15.3.4 Chemo-photodynamic combination 15.3.5 Combined gene and chemotherapy 15.4 Immunotherapy–metabolic therapy 15.4.1 Chemotherapy with immune or metabolic therapy 15.4.1.1 Chemotherapy and immunotherapy 15.4.1.2 Chemotherapy and metabolic therapy 15.4.2 PTT and immunotherapy 15.4.2.1 Photo-immuno-chemotherapy combinations 15.4.3 PDT and immunotherapy 15.4.4 Radiotherapy and immunotherapy 15.4.5 Gene therapy and immunotherapy 15.5 Theranostic NPs based on combination therapy and multimodal imaging 15.6 Challenges 15.7 Conclusion and future perspectives References Index Back Cover