دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: D. K. Choudhary, Arti Mishra, Ajit Varma سری: Soil Biology ISBN (شابک) : 3030768627, 9783030768621 ناشر: Springer سال نشر: 2021 تعداد صفحات: 737 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب Climate Change and the Microbiome: Sustenance of the Ecosphere به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تغییرات آب و هوا و میکروبیوم: حفظ اکوسفر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب تأثیر تغییر آب و هوا بر میکروبیوم خاک و تأثیرات بعدی آن بر سلامت گیاه، پویایی خاک-گیاه و اکوسفر را برجسته میکند. همچنین ایدههای نوظهور برای مقابله با این اثرات را مورد بحث قرار میدهد، به عنوان مثال، از طریق کاربردهای کشاورزی میکروبهای کاربردی، برای اطمینان از یک اکوسیستم پایدار.
تغییرات آبوهوایی توزیع میکروبیوم خاک و در نتیجه برهمکنشهای میکروبیوم و خاک گیاهی را تغییر میدهد. میکروارگانیسم بهبود درک ما از تعامل میکروب- میکروب و گیاه- میکروب تحت شرایط متغیر آب و هوایی ضروری است، زیرا تأثیر کلی این تعاملات تحت شرایط محیطی نامطلوب مختلف وجود ندارد. این کتاب برای درک تأثیر تغییرات آب و هوایی، یعنی عمدتاً تنش شوری و خشکی، بر میکروبیوم خاک و تأثیر آن بر گیاه، عملکرد، و اکوسفر طراحی شده است.
این کتاب در چهار طبقه بندی شده است. بخشها: بخش اول به بررسی تأثیر تغییرات آب و هوایی بر تنوع و غنای میکروبیوم خاک میپردازد. بخش دوم به اثرات تغییرات آب و هوایی بر سلامت گیاهان می پردازد. بخش سوم اثرات بر پویایی و عملکرد خاک-گیاه، به عنوان مثال، بهره وری خاک را مورد بحث قرار می دهد. بخش پایانی به تأثیرات تغییرات آب و هوایی بر عملکرد اکوسیستم می پردازد و همچنین راه حل های بالقوه را مورد بحث قرار می دهد.
این کتاب برای دانشجویان و محققانی که در زمینه علوم خاک، کشاورزی، زیست شناسی مولکولی، فیزیولوژی گیاهی کار می کنند، جذاب خواهد بود. و بیوتکنولوژی
This book highlights the impact of climate change on the soil microbiome and its subsequent effects on plant health, soil-plant dynamics, and the ecosphere. It also discusses emerging ideas to counteract these effects, e.g., through agricultural applications of functional microbes, to ensure a sustainable ecosystem.
Climate change is altering the soil microbiome distributions and thus the interactions in microbiome and plant‐soil microorganism. Improvement of our understanding of microbe-microbe and plant-microbe interaction under changing climatic conditions is essential, because the overall impact of these interactions under varying adverse environmental conditions is lacking. This book has been designed to understand the impact of climate change, i.e., mainly salt and drought stress, on the soil microbiome and its impact on plant, yield, and the ecosphere.
The book is organized into four parts: The first part reviews the impact of climate change on the diversity and richness of the soil microbiome. The second part addresses effects of climate change on plant health. The third part discusses effects on soil-plant dynamics and functionality, e.g., soil productivity. The final part deals with the effects of climate change on ecosystem functioning and also discusses potential solutions.
The book will appeal to students and researchers working in the area of soil science, agriculture, molecular biology, plant physiology, and biotechnology.
Contents Part I: Impact of Climate Change on Soil Microbiome Chapter 1: Impact of Climate Change on Functional Root-Derived Signals 1.1 Introduction 1.2 Impact of Climate Change on Plants 1.3 Impact of Climate Change on Fine Roots 1.4 Influence of Temperature and Precipitation on the Biomass of Fine Roots 1.5 Impact of Climate Change on Nutritional Status and Mycorrhiza of Fine Roots 1.6 Fine Root Biomass in the Extreme Site Conditions of Restored Post-mining Sites 1.7 Conclusions References Chapter 2: Climate Change Alters Microbial Communities 2.1 Introduction 2.1.1 Extreme Effects of Climate Change on Microbial Communities 2.1.2 Influence of Climate Change on Microbial Community´s Functions and Compositions 2.1.2.1 Soil Microbial Communities 2.1.2.2 Marine Microbial Communities 2.1.3 Adaptation of Microbial Communities to Climate Change 2.2 Contributors of Climate Change and Their Impacts on Microbial Community 2.2.1 Temperature 2.2.2 Water Content 2.2.3 Plant 2.3 Alteration of Microbial Community due to Climate Change in Other Aspects 2.3.1 Agriculture 2.3.2 Infections 2.4 Microbial Mitigation to Climate Change 2.5 Conclusion References Chapter 3: The Potential Impact of Climate Change on Soil Health, Soil Biota, and Soil Properties: A Review 3.1 Introduction 3.2 Soil Biota 3.2.1 Impact of Climate Change on Biota 3.2.1.1 Impact of Alterations in CO2 Levels on Soil Biota 3.2.1.2 Impact of Drought and Temperature on Soil Biota 3.3 Soil Health and Properties 3.3.1 Impact of Climate Change on Physical Properties of Soil 3.3.1.1 Impact of Climate Change on Soil Structure 3.3.1.2 Impact of Climate Change on Soil Infiltration 3.3.1.3 Impact of Climate Change on Soil Bulk Density 3.3.1.4 Impact of Climate Change on Rooting Depth 3.3.1.5 Impact of Climate Change on Soil Surface Cover 3.3.1.6 Impact of Climate Change on Soil Temperature 3.3.2 Impact of Climate Change on Chemical Properties of Soil 3.3.2.1 Impact of Climate Change on pH of Soil 3.3.2.2 Impact of Climate Change on Electrical Conductivity 3.3.2.3 Impact of Climate Change on Soil Sorption and Cation Exchange and Plants´ Nutrient Availability 3.3.3 Impact of Climate Change on Biological Properties of Soil 3.3.3.1 Impact of Climate Change on Soil Organic Matter 3.3.3.2 Impact of Climate Change on Soil Carbon 3.3.3.3 Impact of Climate Change on Soil Flora and Fauna 3.3.3.4 Impact of Climate Change on Soil Respiration 3.3.3.5 Impact of Climate Change on Soil Microbial Biomass 3.3.3.6 Impact of Climate Change on Microbial and Metabolic Quotient 3.3.3.7 Impact of Climate Change on Soil´s Enzymatic Activity 3.4 Conclusion References Chapter 4: Impact of Climate Change on Soil Fertility 4.1 Introduction 4.2 Causes of Climatic Changes 4.3 Soil Fertility and Soil Nutrients 4.4 Effect of Climate on Soil 4.5 Methods Utilised for Enhancing Soil Fertility in Changing Climatic Situation 4.6 Conclusion References Chapter 5: Impact of Climate Change on Soil Microbes Involved in Biogeochemical Cycling 5.1 Introduction 5.2 Carbon Cycle and Microorganisms 5.3 Effect of Climate Change on Soil Microorganisms of Carbon Cycle 5.3.1 Effect of Enhanced CO2 on Carbon Cycle Microbes 5.3.2 Effect of Drought and Increased Moisture on Carbon Cycle Microbes 5.3.3 Effect of Rise in Temperature on Carbon Cycle Microbes 5.3.4 Combined Effect of Different Climate Change Factors on Carbon Cycle Microbes 5.3.5 Effect of Extreme Climatic Events on Carbon Cycle Microbes 5.3.6 Impact of Climate Change on Plant and Soil Microbe Interactions 5.4 Nitrogen Cycle and Microorganisms 5.4.1 Effect of Human Activities on Nitrogen Cycle 5.4.2 Effect of Enhanced CO2 on N Cycle Microorganisms 5.4.3 Effect of Enhanced Temperature on N Cycle 5.4.4 Effect of Drought and Increased Precipitation on N Cycle 5.4.5 Effect of Extreme Weather Events on N Cycle Microorganisms 5.5 Conclusions References Chapter 6: Climate Change with Its Impacts on Soil and Soil Microbiome Regulating Biogeochemical Nutrient Transformations 6.1 Introduction 6.2 Climate Change: Causes and Effects 6.2.1 Natural Causes of Climate Change 6.2.1.1 Solar Variation 6.2.1.2 Earth´s Position 6.2.1.3 Plate Tectonics and Volcanism 6.2.1.4 Climate and Weather Oscillations 6.2.2 Human-Induced Climate Change 6.2.2.1 Greenhouse Gases 6.2.2.2 Land-Use Changes 6.2.2.3 Global Dimming 6.3 Climate-Sensitive Distinct Soil Ecosystems 6.3.1 The Arctic 6.3.2 Forests 6.3.3 Grasslands 6.3.4 Drylands 6.4 Impact of Climate Change on Soil Environment and Soil Microbiome 6.4.1 Soil Formation and Development 6.4.2 Soil Fertility and Nutrient Availability 6.4.3 Impact Mechanisms of Climate Change on Soil Microbes 6.4.3.1 Changes in Soil Microbial Diversity 6.4.3.2 Mechanisms Acting Through Physiological Changes 6.4.3.3 Mechanisms Acting Through Plants 6.4.3.4 Mechanisms Acting Through Moisture Fluctuations 6.5 Factors Regulated by Climate Change 6.5.1 Temperature 6.5.2 Moisture 6.5.3 Precipitation 6.5.4 C/N Ratio 6.6 The Interlinked Influences of Soil Microbes on Biogeochemical Nutrient Cycles 6.6.1 Role of Soil Microbes with Respect to Carbon Cycling 6.6.2 Role of Soil Microbes with Respect to Nitrogen Cycling 6.6.3 Role of Soil Microbes with Respect to Phosphorus Cycling 6.6.4 Role of Soil Microbes with Respect to Sulfur Cycling 6.6.5 Role of Soil Microbes with Respect to Potassium Cycling 6.7 Molecular Strategies on Soil Microbes´ Functioning During Climate Change 6.8 Impact of Soil Microbes on Climate Change with Respect to GHGs 6.8.1 CO2 Emissions 6.8.1.1 Effects of Temperature 6.8.1.2 The Permafrost Issues 6.8.1.3 Effects of Changes in Precipitation 6.8.1.4 Effects of Elevated Carbon Dioxide Levels 6.8.1.5 Effects Mediated Through Plants 6.8.2 N2O Emissions 6.8.2.1 Effect of CO2 Increase and Water Response 6.8.2.2 Effect of Plant Influences 6.8.3 CH4 Emissions 6.9 Methods to Protect Nutrient Transformations in Soil 6.9.1 Reduce Soil Tillage 6.9.2 Landscape Management 6.9.3 Crop Management 6.9.4 Amendments of Organic Residues 6.9.5 Nutrient Management 6.10 Conclusion and Future Perspectives References Chapter 7: Climate Change and Its Impact on Soil Properties 7.1 Introduction 7.1.1 Background: Climate Change 7.2 Climate: A Soil-Forming Factor 7.3 Climate and Soil: The Interaction 7.3.1 Soil Physical Properties 7.3.1.1 Soil Texture 7.3.1.2 Structure: Shape and Stability 7.3.1.3 Porosity and Bulk Density 7.3.1.4 Soil Hydrothermal Regime 7.3.1.5 Soil Organic Carbon 7.3.2 Soil Chemical Properties 7.3.2.1 Soil pH 7.3.2.2 Salt Content 7.3.2.3 Electrical Conductivity 7.3.2.4 Cycle of Nutrients 7.4 Climate Change Leading to Soil Degradation 7.4.1 Soil Erosion 7.4.1.1 High Precipitation 7.4.1.2 Decreased Vegetation and Inappropriate Land Use 7.4.1.3 Lower Precipitation 7.4.2 Acidification 7.4.3 Salinization/Sodification 7.4.4 Structure Destruction: Compaction 7.4.5 Biological Degradation 7.4.6 Unfavorable Changes in the Biogeochemical Cycles of Plant Nutrients and Pollutants 7.5 Soil as a Part of Carbon and Nitrogen Cycles 7.6 Conclusion References Chapter 8: Climate Change Impacts on Plant-Microbe Interactions 8.1 Introduction 8.2 Plant Microbiota and Key Interactions 8.2.1 Functional Zones of Plant Ecosystem 8.2.2 Rhizospheric Microbial Diversity 8.2.3 Plant Growth-Promoting Rhizobacteria 8.2.3.1 Free-Living Bacteria 8.2.3.2 Endophytic Bacteria 8.2.4 Plant-Associated Fungi 8.2.4.1 Decomposers 8.2.4.2 Mutualistic or Symbiotic 8.3 Physiological Aspects of Plant-Microbe Interactions 8.3.1 Nitrogen Fixation 8.3.2 Phosphate Solubilization 8.3.3 Iron Sequestration 8.3.4 Plant Growth Hormone (PGH) Production 8.4 Effect of Climatic Change on Diversity and Functions of Plant-Associated Microbes 8.4.1 Effect of Soil Temperature 8.4.2 Effect of Soil Moisture 8.4.3 Effect of Soil pH 8.4.4 Effect of Elevated Atmospheric CO2 8.5 Effect of Climate Change on Phenology 8.5.1 Effect of Microbial Community Shift on Plant Phenology 8.5.2 Impact of Plant Phenological Shifts on Microbial Communities 8.6 Plant-Soil Feedbacks (PSFs) 8.6.1 Direct Influence of Abiotic Factors on PSFs 8.6.2 Soil Community Dynamics and PSFs 8.6.3 Climate Change and Range Expansion 8.6.4 PSFs and Succession 8.6.5 Climate Change and Legacy Effects 8.7 Conclusion References Chapter 9: Climate Changes in Soil Microorganism-Plant Interactions 9.1 Soil, Microbes, and Plants 9.2 Beneficial Plant-Microbe Interactions 9.3 Microbes and Climate Change 9.4 Effect of Climate Change on Plant-Microbe Interaction References Chapter 10: Microbial Sequestration of Atmospheric Carbon Dioxide 10.1 Introduction 10.2 Overview on Carbon Sequestration 10.2.1 Geologic Carbon Sequestration 10.2.2 Biologic Carbon Sequestration 10.3 Terrestrial CO2 Sequestration 10.4 Microbial CO2 Sequestration 10.4.1 Calvin Cycle/Calvin-Benson-Bassham (CBB) Pathway/Reductive Pentose Pathway 10.4.1.1 Proteobacteria 10.4.1.2 Algae 10.4.1.2.1 Microalgae 10.4.1.2.2 Marine Macroalgae 10.4.2 Reductive TCA Cycle or Reverse Citric Acid Cycle 10.4.3 Wood-Ljungdahl Pathway 10.4.4 Hydroxypropionate Cycle 10.5 Fungi and Carbon Sequestration 10.5.1 Mycorrhizal Fungi 10.6 Interlinkage Between Carbon Sequestering Biological Systems 10.7 Importance of CO2 Sequestration by Microbes in Biorefinery 10.8 Way Forward References Chapter 11: Direct and Indirect Impacts of Climatic Change on Soil Communities and Plants 11.1 Introduction 11.2 General Overview of Climate Change 11.3 Impact of Climate Change on Plants 11.3.1 Light 11.3.2 Temperatures 11.3.3 Rainfall 11.3.4 Raising CO2 11.4 Impact of Climate Change on the Soil Communities 11.4.1 Temperature 11.4.2 Elevated CO2 11.5 Climate Change Impact on Plant-Microbe Interactions 11.5.1 Effect of Global Changing Conditions on Arbuscular Mycorrhizal Fungi (AMF) References Chapter 12: How Climate Change Alters Soil Productivity 12.1 Introduction 12.2 Soil Parameter Determines Soil Health 12.3 How Climate Change Influenced Soil Productivity 12.3.1 Impact of Climate Change on Soil Organic Carbon (SOC) and Soil Productivity 12.3.2 Impact of Climate Change on Soil Temperature and Soil Productivity 12.3.3 Effects of Higher CO2 due to Climate Change on Soil Productivity 12.3.4 Rainfall Pattern/Altered Precipitation due to Climate Change Effect Soil Productivity 12.3.5 Impact of Climate Change on Soil Microbial Communities and Soil Productivity 12.4 Conclusion References Part II: Impact of Climate Change on Plant Health Chapter 13: Crop Microbiome Engineering and Relevance in Abiotic Stress Tolerance 13.1 Introduction 13.2 Abiotic Stress in Agriculture: Harnessing Rhizobacterial-Plant Interaction for Increased Resilience 13.2.1 Drought Stress 13.2.2 Salinity Stress 13.2.3 High- or Low-Temperature Stress 13.2.4 Heavy Metal Stress 13.3 Engineering the Crop Microbiome: Recruiting Beneficial Microflora at the Host Roots 13.3.1 Microbiome Transfer and Transplantation 13.3.2 Synthetic Microbial Community 13.3.3 Host-Mediated Artificial Selection 13.3.4 MAP-Assisted Microbiome Engineering and Modular Microbiome 13.3.5 Manipulation of Root Exudates for Engineering Microbiome 13.3.6 Host Genotype, Crop Breeding and Transgenic Varieties in Microbiome Engineering 13.3.7 Effect of Biofertilizer Inoculation on Root Microbial Community Structure 13.3.8 Soil Amendments: Organic and Inorganic 13.4 Conclusion References Chapter 14: Impact of Abiotic Stress on Plant Brassinosteroids 14.1 Introduction 14.2 Brassinosteroids in the Development Regulations of Plant 14.3 The BR Effects in Abiotic Stress 14.3.1 Heat Stress and BRs 14.3.2 Low-Temperature Stress and BRs 14.3.3 BRs and Drought 14.3.4 BRs and Salinity 14.3.5 BRs and Heavy Metals Stress 14.3.6 BRs and Pesticides 14.4 Conclusion References Chapter 15: The Effects of Climate Change on the Alteration of Plant Traits 15.1 Introduction 15.2 Effect of Greenhouse Gases on Plants and Reaction of Plants 15.3 Effect of Water and Temperature Stress on Plants and Reaction of Plants 15.4 Effect of Salt Stress on Plants and the Reaction of Plants 15.5 Conclusion References Chapter 16: Impact of Climate Change on miRNA: Bioinformatics Perspectives 16.1 Introduction 16.2 miRNAs in Plants 16.3 miRNAs and Temperature 16.4 Drought 16.5 UV-B Radiation 16.6 Ozone 16.7 Conclusion References Chapter 17: Climate Change on Plant Community Structure and Ecosystem Function 17.1 Introduction 17.2 Effect of Temperature 17.2.1 Thermal Stress 17.2.2 Thermophilization 17.3 Effect of Biotic Invasion 17.4 Nitrogen Deposition 17.5 Elevated Atmospheric CO2 17.5.1 General Response of C3 and C4 17.5.2 A Comparative Response of C3 and C4 Towards Elevated CO2 17.6 Conclusion References Chapter 18: Impact of Climate Change on the Importance of Plant Growth-Promoting Microbes in the Rhizosphere 18.1 Introduction 18.2 Influence of Climate Change on Soil Microbial Process 18.2.1 Effect of Climate Change on PGPR 18.2.2 Effects of Elevated CO2 Levels 18.2.3 Effect of Temperature 18.3 Influence of Climate Change on Arbuscular Mycorrhizal Fungi 18.3.1 Effect of Warming 18.3.2 Effect of Elevated CO2 Levels 18.3.3 Effect of Temperature 18.3.4 Effect of Gases on Spore Germination of AM Fungi 18.4 Impact of Climate Change in Plant-Microbe Interactions 18.5 Conclusion References Chapter 19: Impact of Climate on Soil Microbes and Plant Health 19.1 Introduction 19.2 Interaction of Soil Microbiota with the Plant 19.3 Effect of Climate on Endophytic Population 19.4 Different Factors and Their Impact 19.4.1 Temperature 19.4.2 pH 19.4.3 Salinity 19.4.4 Water 19.4.5 Soil Structure 19.5 Conclusion References Chapter 20: Climate Change and Plant Diversity: Threats and Opportunities 20.1 Introduction 20.2 Algae Diversity and Climate Change 20.3 Bryophytes Diversity and Climate Change 20.4 Pteridophytes Diversity and Climate Change 20.5 Gymnosperms Diversity and Climate Change 20.6 Angiosperms Diversity and Climate Change 20.6.1 Monocotyledons 20.6.2 Dicotyledons 20.7 Future Prospects References Chapter 21: Impact of Climate Change on Functional AM Fungi in Rhizosphere 21.1 Introduction 21.2 Effect of Elevated CO2 (eCO2) on AM Fungi 21.3 Effect of Altered Temperature on AM Fungi 21.4 Precipitation Pattern Changes Caused by Climate Change 21.4.1 AM Fungi Provide Tolerance to Plants Under Water Stress 21.4.2 Effects of Altered Rainfall Regimes on AM Fungal Communities 21.4.3 Mechanisms Behind the Changes in Communities of AM Fungi in Altered Rainfall Regimes 21.4.4 AM Fungal Community Responses Under Altered Rainfall Regimes Through Fungal Traits Study 21.5 Effect of Increasing Nitrogen Deposition on AM Fungi 21.6 Conclusion References Part III: Impact of Climate Change on Soil-Plant Dynamics and Functionality Chapter 22: Phytoremediation of Polycyclic Aromatic Hydrocarbons-Contaminated Soils 22.1 Introduction 22.2 PAHs Sources and Uses 22.3 Ecotoxicological Effects of PAHs 22.4 Effects of PAHs on Human´s Health 22.5 PAHs Removal 22.5.1 Degradation of PAHs 22.5.1.1 Photolysis Degradation 22.5.1.2 Chemical Degradation 22.5.1.3 PAHs Biodegradation 22.6 PAHs Phytoremediation 22.6.1 Phytoremediation by Plants 22.6.2 Plant-Endophyte Partnerships 22.7 Plant-Endophyte Phytoremediation 22.7.1 Degradation and Detoxification of Organic Pollutants 22.7.2 The Role of Biosurfactants of Endophytes in Phytoremediation 22.8 Plant Metabolism Effects on Organic Pollutants 22.9 Plant-Endophyte Roles in the Removal of Organic Pollutants 22.9.1 Colonization and Survival of Endophyte 22.9.2 Mutualistic Symbiotic Relations Between Endophytes and Host Plants 22.9.3 Co-metabolism of Organic Pollutants 22.10 Enzymes Effective on Organic Pollutants Degradation 22.11 Conclusion References Chapter 23: The Impact of Climate Change on Forest Tree Species Dieback and Changes in Their Distribution 23.1 Introduction 23.2 The Impact of Climate Change on Tree Species Distribution 23.3 The Impact of Climate Changes on Tree Growth and Stand Productivity 23.4 Pinus sylvestris Dieback: A Case Study 23.5 Picea abies Dieback: A Case Study 23.6 Conclusions References Chapter 24: Climate Change Impacts on Soil Microorganisms that Regulate Nutrient Transformations 24.1 Introduction 24.1.1 Elevated CO2 24.1.2 Increased Temperature 24.1.3 Drought 24.1.4 Increased Rainfall and Flooding 24.2 Microbial Responses to Climate Change 24.2.1 Causes of Climate Change 24.3 Effect of Climate Change on Microorganisms 24.3.1 Microbial Community and Methane Cycle 24.3.2 Microbial Community and Carbon Cycle 24.3.3 Microbial Community and Nitrogen Cycle 24.4 Structure and Role of Microbial Community in Climate Change 24.5 Climate Modulators and Native Regimes of the Microbial Community References Chapter 25: Deployment of Benign Bacterial Strains to Improve Soil Productivity Under Drought Stress 25.1 Introduction 25.2 Drought Severity and Types 25.3 How Drought Damages Plants? 25.4 Choosing the Crops 25.5 Plant Growth-Promoting Bacteria 25.5.1 Properties of PGPB 25.5.1.1 Phosphate Solubilization 25.5.1.2 Iron Chelation and Siderophores 25.5.1.3 Modulation of Phytohormone 25.5.1.4 Nitrogen Fixation 25.6 Conclusion References Chapter 26: Biogeochemical Cycles in Soil Microbiomes in Response to Climate Change 26.1 Introduction 26.2 Soil Ecosystems and Their Climate Sensitivity 26.2.1 Soil Microbiome and the Factors Regulating Its Structure and Function 26.2.2 The Uncertainty Factors in the Soil Microbiome with Respect to Climate Change 26.2.3 Soil Ecosystems that are Vulnerable to Climate Change 26.3 Ecosystem Functions and Services of Soil Microbiome 26.4 Microorganisms and Biogeochemical Cycling with Reference to Impact on Climate 26.4.1 Carbon Cycle and Climate Change 26.4.1.1 Carbon Cycle and the Role of Soil Microbes 26.4.1.2 Possible Impacts of Climate Change on Carbon Cycle 26.4.2 Nitrogen Cycle and Climate Change 26.4.2.1 Nitrogen Cycle and the Role of Soil Microbes 26.4.2.2 Possible Impacts of Climate Change on Nitrogen Cycle 26.4.3 Sulfur Cycle and Climate Change 26.4.3.1 Sulfur Cycle and the Role of Microbes 26.4.3.2 Possible Impacts of Climate Change on Sulfur Cycle 26.5 Emerging Issues and Future Prospects in Soil Microbiome Research in the Context of Nutrient Cycling and Climate Change 26.5.1 Agricultural Practices, Soil Microbes, and Climate Change 26.5.2 Climate Change and Polar Microorganisms 26.5.3 Species Coexistence and Multitrophic Interactions in Soil Microbiome in the Context of Climate Change 26.5.4 Microbial Evolution with Respect to Climate Change: Past and Future 26.5.5 Mitigating Climate Change by Understanding Microbial Processes 26.6 Conclusion References Chapter 27: Climate Change and Nutrients Dynamics of Soil 27.1 Introduction 27.2 Impact of Climate Changes 27.2.1 Impact of Climate Changes on Microbial Structure and Composition 27.2.1.1 Elevated Temperature 27.2.1.2 Precipitation 27.2.1.3 Elevated CO2 27.2.2 Impact of Climate Changes on Microbial Processes 27.2.3 Impact of Climate Changes on Nutrient Dynamics 27.3 Microbial Feedback to Climate Changes 27.3.1 Direct Feedback 27.3.2 Indirect Feedback 27.4 Role of Microbes in Climate Change Mitigation 27.5 Conclusion and Future Perspectives References Chapter 28: Impact of Climate Change on Soil Fertility 28.1 Introduction 28.2 Environmental Consequences of Climate Change 28.3 Influence of Climate Change on Soil Properties 28.3.1 Soil Physical Properties 28.3.1.1 Soil Texture 28.3.1.2 Soil Structure 28.3.1.3 Bulk Density and Porosity 28.3.1.4 Soil Water Retention and Availability 28.3.2 Soil Chemical Properties 28.3.2.1 Soil pH 28.3.2.2 Cation Exchange Capacity 28.3.2.3 Soil Salinization 28.3.2.4 Nutrient Cycle in Soil 28.3.2.5 Soil Fertility and Nutrient Acquisition 28.3.3 Soil Biological Properties 28.3.3.1 Soil Organic Matter 28.3.3.2 Nutrient Transformation in Soil 28.3.3.3 Soil Microbial Biomass 28.4 Adaptation and Mitigation of Climate Change 28.5 Conclusion References Chapter 29: Use of Bacterial Strains to Improve Soil Productivity Under Salt Stress 29.1 Introduction 29.2 Salinity 29.2.1 Types of Salinities 29.2.2 Understanding Salinity 29.2.3 Classification of Different Soil Types 29.2.3.1 Saline Soil 29.2.3.2 Sodic Soil 29.2.3.3 Saline-Sodic Soil 29.2.4 Crop Tolerance to Salt-Affected Soils 29.2.5 Effect of Salinity Stress 29.2.6 Plant Signaling During Stress 29.3 Plant Growth-Promoting Bacteria (PGPB) 29.3.1 Direct Mechanism 29.3.1.1 Nutrient Acquisition 29.3.1.1.1 Nitrogen Fixation 29.3.1.1.2 Phosphate Solubilization 29.3.1.1.3 Phytohormone Production 29.3.1.1.4 Auxin 29.3.1.1.5 Gibberellin 29.3.1.1.6 Cytokinin 29.3.1.1.7 Nitric Oxide 29.3.1.1.8 Abscisic Acid 29.3.1.2 Enzyme Secretion 29.3.1.2.1 ACC Deaminase 29.3.2 Indirect Mechanism 29.3.2.1 Antibiotics 29.3.2.2 Cell Wall-Degrading Enzymes 29.3.2.3 Siderophores 29.3.2.4 Volatile Organic Compounds (VOCs) 29.4 Alleviation of Salinity Stress by Microbes 29.5 Conclusion References Chapter 30: Impact of Climate Change on Soil Functionality 30.1 Introduction 30.2 Soil Functions 30.3 Climate and Soil Interconnection and Impact of Climate Change 30.4 Role of Soil in Climate Change Crisis 30.5 Conclusion References Part IV: Impact of Climate Change on Ecosystem Functioning Chapter 31: The Impacts of Climate Change on Soil Fertility in Nigeria 31.1 Introduction 31.2 Definition of Terms 31.3 Methodology 31.3.1 Climate Change and Soil Erosion Crisis in Nigeria: The South-East Dilemma 31.3.2 How Management and Protection of Soil Resources Can Contribute to Agricultural Production in Nigeria? 31.3.3 Understanding the Soil Resources Problem 31.3.4 Improving Soil Fertility and Productivity Through Management 31.3.5 Recommendations 31.4 Conclusion References Chapter 32: Rising Greenhouse Gases in the Atmosphere: The Microbes Can Be a Solution-A Review 32.1 Introduction 32.2 Sources of GHGs in the Atmosphere 32.3 Greenhouse Gases and Its Impact on Environment and Human Health 32.4 Microbes and GHGs 32.4.1 Microorganisms and Carbon Dioxide 32.4.2 Microorganisms and Methane 32.4.3 Microorganism and Nitrous Oxide 32.5 Microbes and Biofuels 32.6 Other Microbial Techniques Used for Enhancing GHGs Sequestration and Mitigation 32.6.1 Enzymatic Carbon Dioxide Capture and Storage (CCS) 32.6.2 Engineering Microorganisms for Enhanced CO2 Sequestration 32.6.3 Manipulation of Microbial Community Structure for Mitigation of Nitrous Oxide 32.6.3.1 Bioaugmentation with N2O-Reducing Microbiomes to Roots, Soils, or Fertilizers 32.6.3.2 Altering the Production of Specific Signaling Molecule 32.7 Conclusion References Chapter 33: Battling Climate Change: Improving Crop Productivity and Quality by Increasing Photosynthetic Efficiency, Deployin... 33.1 Introduction 33.2 Role of Plant Photosynthesis in Controlling Climate Change 33.2.1 Role of C3 and C4 Plants in Reducing Climate Change Contributed by CO2 33.2.2 Role of Genetic Engineering Approach for Reducing Climate Change 33.2.3 Approaches to Improve Photosynthetic Efficiency and Crop Yield 33.3 Role of Microbiome in Controlling Climate Change 33.3.1 Global Carbon Cycle and CO2 Mitigation by Microflora 33.3.2 Methane Mitigation by Methanotrophs 33.3.3 The Nitrogen Cycle and Control of Nitrogen Oxides 33.4 Microbes and Their Role in Sustainable Agriculture 33.4.1 Application of Metagenomics for Studying and Developing the Beneficial Microbiome 33.5 Application of AI and ML for Improving Plant Photosynthesis, Agricultural Productivity, Selection of Beneficial Microbiom... 33.6 Conclusion References Chapter 34: Socio-Economic Assessment of Climate Change Impact on Biodiversity and Ecosystem Services 34.1 Introduction 34.2 Impact of Climate Change Globally 34.2.1 Impact on Land and Ocean (Terrestrial and Aquatic) 34.2.2 Impacts on Cryosphere 34.2.3 Impact on Fisheries 34.2.4 Impact on Tourism and Ecotourism 34.2.5 Shifts in Species Distribution 34.2.6 Disease Regulation 34.2.7 Agricultural Production and Food Security 34.2.8 Impact on Land Use Planning 34.2.9 Unsustainable Grazing 34.2.10 Mining 34.2.11 Supporting Services 34.2.12 Cultural Services 34.3 Ecosystem-Based Services 34.4 Socio-economic Assessment of Biodiversity and Ecosystem Services 34.4.1 Valued Socio-Economic Components and Associated Issues 34.5 Different Policies for Conservation of Nature and Natural Resources 34.6 Sustainability 34.7 Human Well-Being 34.8 Ecological, Economic and Macroallocation Values That Are Incommensurable 34.9 An Integrated Climate and Socio-Economic Effects and Its Effects Assessment 34.10 Challenges to Adaptation 34.11 Future Perspective References Chapter 35: Impact of Climate Change on Localized Plant-Microbe Signalling and Technology Advancement in Microbial Quorum Sens... 35.1 Introduction 35.2 Plant and Microbes 35.2.1 Favourable Zones in Plant for Microbial Growth 35.2.1.1 Microbiome at Rhizosphere and Secreting Components 35.2.1.2 Microbiome at Phyllosphere and Secreting Components 35.2.1.3 Microbiome at Endosphere and Secreting Components 35.2.2 Contribution from Plants to Microbe Interactions by Chemicals and Signals 35.2.3 Contribution from Microbes to Plant Interactions 35.2.4 Climatic Responses on Plant-Microbe Interactions 35.2.4.1 Direct Impact of Climate Change 35.2.4.1.1 Microbial-Plant Interactions 35.2.4.2 Indirect Effects 35.2.4.2.1 Climate Change on Plant and Microbial Population 35.2.4.2.2 Climate Change Alters Plant Phenology and Microbial Communities 35.2.5 Microbes in Plant Growth Promotion 35.2.5.1 Plant Growth-Promoting Rhizobacteria (PGPR) 35.2.5.2 Plant Growth-Promoting Fungi (PGPF) 35.3 Quorum Sensing: Microbial Role 35.3.1 Biocommunication and Mechanisms 35.3.1.1 Mechanism in Rhizosphere 35.3.1.2 Quorum Sensing in Soil Microorganisms 35.3.2 Synthetic Biology in Quorum Sensing 35.3.2.1 Synthetic Biology to Manipulate QS Signal and QS-Mediated Cell Phenotypes 35.3.2.2 Synthetic Biology for Plant Microbiome 35.3.2.3 Synthetic Biology in Plant Breeding 35.4 Conclusion References Chapter 36: Molecular and Cellular Mechanisms Underlying the Microbial Survival Strategies: Insights into Temperature and Nitr... 36.1 Introduction 36.2 Various Microbial Responses to Changes in Environmental Conditions 36.3 Microbial Responses to Warming with Underlying Genetic Disposition 36.4 Microbial Adaptation Strategies to Changes in Nutrient Availability (Nitrogen Starvation) 36.4.1 Adaptation to Variable Nitrogen Availability Via Regulation of the Glutamine Synthetase 36.4.2 Metabolic Adaptation to Nitrogen Deprivation 36.4.2.1 Nitrogen Fixation by Diazotrophic Bacteria 36.4.2.2 Adaptation to Nitrogen Starvation in Nondiazotrophic Bacteria 36.5 Concluding Remarks References