ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Climate Change and the Microbiome: Sustenance of the Ecosphere

دانلود کتاب تغییرات آب و هوا و میکروبیوم: حفظ اکوسفر

Climate Change and the Microbiome: Sustenance of the Ecosphere

مشخصات کتاب

Climate Change and the Microbiome: Sustenance of the Ecosphere

ویرایش: 1 
نویسندگان: , ,   
سری: Soil Biology 
ISBN (شابک) : 3030768627, 9783030768621 
ناشر: Springer 
سال نشر: 2021 
تعداد صفحات: 737 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 14 مگابایت 

قیمت کتاب (تومان) : 48,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 18


در صورت تبدیل فایل کتاب Climate Change and the Microbiome: Sustenance of the Ecosphere به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تغییرات آب و هوا و میکروبیوم: حفظ اکوسفر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تغییرات آب و هوا و میکروبیوم: حفظ اکوسفر



این کتاب تأثیر تغییر آب و هوا بر میکروبیوم خاک و تأثیرات بعدی آن بر سلامت گیاه، پویایی خاک-گیاه و اکوسفر را برجسته می‌کند. همچنین ایده‌های نوظهور برای مقابله با این اثرات را مورد بحث قرار می‌دهد، به عنوان مثال، از طریق کاربردهای کشاورزی میکروب‌های کاربردی، برای اطمینان از یک اکوسیستم پایدار.

تغییرات آب‌وهوایی توزیع میکروبیوم خاک و در نتیجه برهمکنش‌های میکروبیوم و خاک گیاهی را تغییر می‌دهد. میکروارگانیسم بهبود درک ما از تعامل میکروب- میکروب و گیاه- میکروب تحت شرایط متغیر آب و هوایی ضروری است، زیرا تأثیر کلی این تعاملات تحت شرایط محیطی نامطلوب مختلف وجود ندارد. این کتاب برای درک تأثیر تغییرات آب و هوایی، یعنی عمدتاً تنش شوری و خشکی، بر میکروبیوم خاک و تأثیر آن بر گیاه، عملکرد، و اکوسفر طراحی شده است.

این کتاب در چهار طبقه بندی شده است. بخش‌ها: بخش اول به بررسی تأثیر تغییرات آب و هوایی بر تنوع و غنای میکروبیوم خاک می‌پردازد. بخش دوم به اثرات تغییرات آب و هوایی بر سلامت گیاهان می پردازد. بخش سوم اثرات بر پویایی و عملکرد خاک-گیاه، به عنوان مثال، بهره وری خاک را مورد بحث قرار می دهد. بخش پایانی به تأثیرات تغییرات آب و هوایی بر عملکرد اکوسیستم می پردازد و همچنین راه حل های بالقوه را مورد بحث قرار می دهد.

این کتاب برای دانشجویان و محققانی که در زمینه علوم خاک، کشاورزی، زیست شناسی مولکولی، فیزیولوژی گیاهی کار می کنند، جذاب خواهد بود. و بیوتکنولوژی





توضیحاتی درمورد کتاب به خارجی

This book highlights the impact of climate change on the soil microbiome and its subsequent effects on plant health, soil-plant dynamics, and the ecosphere. It also discusses emerging ideas to counteract these effects, e.g., through agricultural applications of functional microbes, to ensure a sustainable ecosystem.

Climate change is altering the soil microbiome distributions and thus the interactions in microbiome and plant‐soil microorganism. Improvement of our understanding of microbe-microbe and plant-microbe interaction under changing climatic conditions is essential, because the overall impact of these interactions under varying adverse environmental conditions is lacking. This book has been designed to understand the impact of climate change, i.e., mainly salt and drought stress, on the soil microbiome and its impact on plant, yield, and the ecosphere.

The book is organized into four parts: The first part reviews the impact of climate change on the diversity and richness of the soil microbiome. The second part addresses effects of climate change on plant health. The third part discusses effects on soil-plant dynamics and functionality, e.g., soil productivity. The final part deals with the effects of climate change on ecosystem functioning and also discusses potential solutions.

The book will appeal to students and researchers working in the area of soil science, agriculture, molecular biology, plant physiology, and biotechnology. 






فهرست مطالب

Contents
Part I: Impact of Climate Change on Soil Microbiome
	Chapter 1: Impact of Climate Change on Functional Root-Derived Signals
		1.1 Introduction
		1.2 Impact of Climate Change on Plants
		1.3 Impact of Climate Change on Fine Roots
		1.4 Influence of Temperature and Precipitation on the Biomass of Fine Roots
		1.5 Impact of Climate Change on Nutritional Status and Mycorrhiza of Fine Roots
		1.6 Fine Root Biomass in the Extreme Site Conditions of Restored Post-mining Sites
		1.7 Conclusions
		References
	Chapter 2: Climate Change Alters Microbial Communities
		2.1 Introduction
			2.1.1 Extreme Effects of Climate Change on Microbial Communities
			2.1.2 Influence of Climate Change on Microbial Community´s Functions and Compositions
				2.1.2.1 Soil Microbial Communities
				2.1.2.2 Marine Microbial Communities
			2.1.3 Adaptation of Microbial Communities to Climate Change
		2.2 Contributors of Climate Change and Their Impacts on Microbial Community
			2.2.1 Temperature
			2.2.2 Water Content
			2.2.3 Plant
		2.3 Alteration of Microbial Community due to Climate Change in Other Aspects
			2.3.1 Agriculture
			2.3.2 Infections
		2.4 Microbial Mitigation to Climate Change
		2.5 Conclusion
		References
	Chapter 3: The Potential Impact of Climate Change on Soil Health, Soil Biota, and Soil Properties: A Review
		3.1 Introduction
		3.2 Soil Biota
			3.2.1 Impact of Climate Change on Biota
				3.2.1.1 Impact of Alterations in CO2 Levels on Soil Biota
				3.2.1.2 Impact of Drought and Temperature on Soil Biota
		3.3 Soil Health and Properties
			3.3.1 Impact of Climate Change on Physical Properties of Soil
				3.3.1.1 Impact of Climate Change on Soil Structure
				3.3.1.2 Impact of Climate Change on Soil Infiltration
				3.3.1.3 Impact of Climate Change on Soil Bulk Density
				3.3.1.4 Impact of Climate Change on Rooting Depth
				3.3.1.5 Impact of Climate Change on Soil Surface Cover
				3.3.1.6 Impact of Climate Change on Soil Temperature
			3.3.2 Impact of Climate Change on Chemical Properties of Soil
				3.3.2.1 Impact of Climate Change on pH of Soil
				3.3.2.2 Impact of Climate Change on Electrical Conductivity
				3.3.2.3 Impact of Climate Change on Soil Sorption and Cation Exchange and Plants´ Nutrient Availability
			3.3.3 Impact of Climate Change on Biological Properties of Soil
				3.3.3.1 Impact of Climate Change on Soil Organic Matter
				3.3.3.2 Impact of Climate Change on Soil Carbon
				3.3.3.3 Impact of Climate Change on Soil Flora and Fauna
				3.3.3.4 Impact of Climate Change on Soil Respiration
				3.3.3.5 Impact of Climate Change on Soil Microbial Biomass
				3.3.3.6 Impact of Climate Change on Microbial and Metabolic Quotient
				3.3.3.7 Impact of Climate Change on Soil´s Enzymatic Activity
		3.4 Conclusion
		References
	Chapter 4: Impact of Climate Change on Soil Fertility
		4.1 Introduction
		4.2 Causes of Climatic Changes
		4.3 Soil Fertility and Soil Nutrients
		4.4 Effect of Climate on Soil
		4.5 Methods Utilised for Enhancing Soil Fertility in Changing Climatic Situation
		4.6 Conclusion
		References
	Chapter 5: Impact of Climate Change on Soil Microbes Involved in Biogeochemical Cycling
		5.1 Introduction
		5.2 Carbon Cycle and Microorganisms
		5.3 Effect of Climate Change on Soil Microorganisms of Carbon Cycle
			5.3.1 Effect of Enhanced CO2 on Carbon Cycle Microbes
			5.3.2 Effect of Drought and Increased Moisture on Carbon Cycle Microbes
			5.3.3 Effect of Rise in Temperature on Carbon Cycle Microbes
			5.3.4 Combined Effect of Different Climate Change Factors on Carbon Cycle Microbes
			5.3.5 Effect of Extreme Climatic Events on Carbon Cycle Microbes
			5.3.6 Impact of Climate Change on Plant and Soil Microbe Interactions
		5.4 Nitrogen Cycle and Microorganisms
			5.4.1 Effect of Human Activities on Nitrogen Cycle
			5.4.2 Effect of Enhanced CO2 on N Cycle Microorganisms
			5.4.3 Effect of Enhanced Temperature on N Cycle
			5.4.4 Effect of Drought and Increased Precipitation on N Cycle
			5.4.5 Effect of Extreme Weather Events on N Cycle Microorganisms
		5.5 Conclusions
		References
	Chapter 6: Climate Change with Its Impacts on Soil and Soil Microbiome Regulating Biogeochemical Nutrient Transformations
		6.1 Introduction
		6.2 Climate Change: Causes and Effects
			6.2.1 Natural Causes of Climate Change
				6.2.1.1 Solar Variation
				6.2.1.2 Earth´s Position
				6.2.1.3 Plate Tectonics and Volcanism
				6.2.1.4 Climate and Weather Oscillations
			6.2.2 Human-Induced Climate Change
				6.2.2.1 Greenhouse Gases
				6.2.2.2 Land-Use Changes
				6.2.2.3 Global Dimming
		6.3 Climate-Sensitive Distinct Soil Ecosystems
			6.3.1 The Arctic
			6.3.2 Forests
			6.3.3 Grasslands
			6.3.4 Drylands
		6.4 Impact of Climate Change on Soil Environment and Soil Microbiome
			6.4.1 Soil Formation and Development
			6.4.2 Soil Fertility and Nutrient Availability
			6.4.3 Impact Mechanisms of Climate Change on Soil Microbes
				6.4.3.1 Changes in Soil Microbial Diversity
				6.4.3.2 Mechanisms Acting Through Physiological Changes
				6.4.3.3 Mechanisms Acting Through Plants
				6.4.3.4 Mechanisms Acting Through Moisture Fluctuations
		6.5 Factors Regulated by Climate Change
			6.5.1 Temperature
			6.5.2 Moisture
			6.5.3 Precipitation
			6.5.4 C/N Ratio
		6.6 The Interlinked Influences of Soil Microbes on Biogeochemical Nutrient Cycles
			6.6.1 Role of Soil Microbes with Respect to Carbon Cycling
			6.6.2 Role of Soil Microbes with Respect to Nitrogen Cycling
			6.6.3 Role of Soil Microbes with Respect to Phosphorus Cycling
			6.6.4 Role of Soil Microbes with Respect to Sulfur Cycling
			6.6.5 Role of Soil Microbes with Respect to Potassium Cycling
		6.7 Molecular Strategies on Soil Microbes´ Functioning During Climate Change
		6.8 Impact of Soil Microbes on Climate Change with Respect to GHGs
			6.8.1 CO2 Emissions
				6.8.1.1 Effects of Temperature
				6.8.1.2 The Permafrost Issues
				6.8.1.3 Effects of Changes in Precipitation
				6.8.1.4 Effects of Elevated Carbon Dioxide Levels
				6.8.1.5 Effects Mediated Through Plants
			6.8.2 N2O Emissions
				6.8.2.1 Effect of CO2 Increase and Water Response
				6.8.2.2 Effect of Plant Influences
			6.8.3 CH4 Emissions
		6.9 Methods to Protect Nutrient Transformations in Soil
			6.9.1 Reduce Soil Tillage
			6.9.2 Landscape Management
			6.9.3 Crop Management
			6.9.4 Amendments of Organic Residues
			6.9.5 Nutrient Management
		6.10 Conclusion and Future Perspectives
		References
	Chapter 7: Climate Change and Its Impact on Soil Properties
		7.1 Introduction
			7.1.1 Background: Climate Change
		7.2 Climate: A Soil-Forming Factor
		7.3 Climate and Soil: The Interaction
			7.3.1 Soil Physical Properties
				7.3.1.1 Soil Texture
				7.3.1.2 Structure: Shape and Stability
				7.3.1.3 Porosity and Bulk Density
				7.3.1.4 Soil Hydrothermal Regime
				7.3.1.5 Soil Organic Carbon
			7.3.2 Soil Chemical Properties
				7.3.2.1 Soil pH
				7.3.2.2 Salt Content
				7.3.2.3 Electrical Conductivity
				7.3.2.4 Cycle of Nutrients
		7.4 Climate Change Leading to Soil Degradation
			7.4.1 Soil Erosion
				7.4.1.1 High Precipitation
				7.4.1.2 Decreased Vegetation and Inappropriate Land Use
				7.4.1.3 Lower Precipitation
			7.4.2 Acidification
			7.4.3 Salinization/Sodification
			7.4.4 Structure Destruction: Compaction
			7.4.5 Biological Degradation
			7.4.6 Unfavorable Changes in the Biogeochemical Cycles of Plant Nutrients and Pollutants
		7.5 Soil as a Part of Carbon and Nitrogen Cycles
		7.6 Conclusion
		References
	Chapter 8: Climate Change Impacts on Plant-Microbe Interactions
		8.1 Introduction
		8.2 Plant Microbiota and Key Interactions
			8.2.1 Functional Zones of Plant Ecosystem
			8.2.2 Rhizospheric Microbial Diversity
			8.2.3 Plant Growth-Promoting Rhizobacteria
				8.2.3.1 Free-Living Bacteria
				8.2.3.2 Endophytic Bacteria
			8.2.4 Plant-Associated Fungi
				8.2.4.1 Decomposers
				8.2.4.2 Mutualistic or Symbiotic
		8.3 Physiological Aspects of Plant-Microbe Interactions
			8.3.1 Nitrogen Fixation
			8.3.2 Phosphate Solubilization
			8.3.3 Iron Sequestration
			8.3.4 Plant Growth Hormone (PGH) Production
		8.4 Effect of Climatic Change on Diversity and Functions of Plant-Associated Microbes
			8.4.1 Effect of Soil Temperature
			8.4.2 Effect of Soil Moisture
			8.4.3 Effect of Soil pH
			8.4.4 Effect of Elevated Atmospheric CO2
		8.5 Effect of Climate Change on Phenology
			8.5.1 Effect of Microbial Community Shift on Plant Phenology
			8.5.2 Impact of Plant Phenological Shifts on Microbial Communities
		8.6 Plant-Soil Feedbacks (PSFs)
			8.6.1 Direct Influence of Abiotic Factors on PSFs
			8.6.2 Soil Community Dynamics and PSFs
			8.6.3 Climate Change and Range Expansion
			8.6.4 PSFs and Succession
			8.6.5 Climate Change and Legacy Effects
		8.7 Conclusion
		References
	Chapter 9: Climate Changes in Soil Microorganism-Plant Interactions
		9.1 Soil, Microbes, and Plants
		9.2 Beneficial Plant-Microbe Interactions
		9.3 Microbes and Climate Change
		9.4 Effect of Climate Change on Plant-Microbe Interaction
		References
	Chapter 10: Microbial Sequestration of Atmospheric Carbon Dioxide
		10.1 Introduction
		10.2 Overview on Carbon Sequestration
			10.2.1 Geologic Carbon Sequestration
			10.2.2 Biologic Carbon Sequestration
		10.3 Terrestrial CO2 Sequestration
		10.4 Microbial CO2 Sequestration
			10.4.1 Calvin Cycle/Calvin-Benson-Bassham (CBB) Pathway/Reductive Pentose Pathway
				10.4.1.1 Proteobacteria
				10.4.1.2 Algae
					10.4.1.2.1 Microalgae
					10.4.1.2.2 Marine Macroalgae
			10.4.2 Reductive TCA Cycle or Reverse Citric Acid Cycle
			10.4.3 Wood-Ljungdahl Pathway
			10.4.4 Hydroxypropionate Cycle
		10.5 Fungi and Carbon Sequestration
			10.5.1 Mycorrhizal Fungi
		10.6 Interlinkage Between Carbon Sequestering Biological Systems
		10.7 Importance of CO2 Sequestration by Microbes in Biorefinery
		10.8 Way Forward
		References
	Chapter 11: Direct and Indirect Impacts of Climatic Change on Soil Communities and Plants
		11.1 Introduction
		11.2 General Overview of Climate Change
		11.3 Impact of Climate Change on Plants
			11.3.1 Light
			11.3.2 Temperatures
			11.3.3 Rainfall
			11.3.4 Raising CO2
		11.4 Impact of Climate Change on the Soil Communities
			11.4.1 Temperature
			11.4.2 Elevated CO2
		11.5 Climate Change Impact on Plant-Microbe Interactions
			11.5.1 Effect of Global Changing Conditions on Arbuscular Mycorrhizal Fungi (AMF)
		References
	Chapter 12: How Climate Change Alters Soil Productivity
		12.1 Introduction
		12.2 Soil Parameter Determines Soil Health
		12.3 How Climate Change Influenced Soil Productivity
			12.3.1 Impact of Climate Change on Soil Organic Carbon (SOC) and Soil Productivity
			12.3.2 Impact of Climate Change on Soil Temperature and Soil Productivity
			12.3.3 Effects of Higher CO2 due to Climate Change on Soil Productivity
			12.3.4 Rainfall Pattern/Altered Precipitation due to Climate Change Effect Soil Productivity
			12.3.5 Impact of Climate Change on Soil Microbial Communities and Soil Productivity
		12.4 Conclusion
		References
Part II: Impact of Climate Change on Plant Health
	Chapter 13: Crop Microbiome Engineering and Relevance in Abiotic Stress Tolerance
		13.1 Introduction
		13.2 Abiotic Stress in Agriculture: Harnessing Rhizobacterial-Plant Interaction for Increased Resilience
			13.2.1 Drought Stress
			13.2.2 Salinity Stress
			13.2.3 High- or Low-Temperature Stress
			13.2.4 Heavy Metal Stress
		13.3 Engineering the Crop Microbiome: Recruiting Beneficial Microflora at the Host Roots
			13.3.1 Microbiome Transfer and Transplantation
			13.3.2 Synthetic Microbial Community
			13.3.3 Host-Mediated Artificial Selection
			13.3.4 MAP-Assisted Microbiome Engineering and Modular Microbiome
			13.3.5 Manipulation of Root Exudates for Engineering Microbiome
			13.3.6 Host Genotype, Crop Breeding and Transgenic Varieties in Microbiome Engineering
			13.3.7 Effect of Biofertilizer Inoculation on Root Microbial Community Structure
			13.3.8 Soil Amendments: Organic and Inorganic
		13.4 Conclusion
		References
	Chapter 14: Impact of Abiotic Stress on Plant Brassinosteroids
		14.1 Introduction
		14.2 Brassinosteroids in the Development Regulations of Plant
		14.3 The BR Effects in Abiotic Stress
			14.3.1 Heat Stress and BRs
			14.3.2 Low-Temperature Stress and BRs
			14.3.3 BRs and Drought
			14.3.4 BRs and Salinity
			14.3.5 BRs and Heavy Metals Stress
			14.3.6 BRs and Pesticides
		14.4 Conclusion
		References
	Chapter 15: The Effects of Climate Change on the Alteration of Plant Traits
		15.1 Introduction
		15.2 Effect of Greenhouse Gases on Plants and Reaction of Plants
		15.3 Effect of Water and Temperature Stress on Plants and Reaction of Plants
		15.4 Effect of Salt Stress on Plants and the Reaction of Plants
		15.5 Conclusion
		References
	Chapter 16: Impact of Climate Change on miRNA: Bioinformatics Perspectives
		16.1 Introduction
		16.2 miRNAs in Plants
		16.3 miRNAs and Temperature
		16.4 Drought
		16.5 UV-B Radiation
		16.6 Ozone
		16.7 Conclusion
		References
	Chapter 17: Climate Change on Plant Community Structure and Ecosystem Function
		17.1 Introduction
		17.2 Effect of Temperature
			17.2.1 Thermal Stress
			17.2.2 Thermophilization
		17.3 Effect of Biotic Invasion
		17.4 Nitrogen Deposition
		17.5 Elevated Atmospheric CO2
			17.5.1 General Response of C3 and C4
			17.5.2 A Comparative Response of C3 and C4 Towards Elevated CO2
		17.6 Conclusion
		References
	Chapter 18: Impact of Climate Change on the Importance of Plant Growth-Promoting Microbes in the Rhizosphere
		18.1 Introduction
		18.2 Influence of Climate Change on Soil Microbial Process
			18.2.1 Effect of Climate Change on PGPR
			18.2.2 Effects of Elevated CO2 Levels
			18.2.3 Effect of Temperature
		18.3 Influence of Climate Change on Arbuscular Mycorrhizal Fungi
			18.3.1 Effect of Warming
			18.3.2 Effect of Elevated CO2 Levels
			18.3.3 Effect of Temperature
			18.3.4 Effect of Gases on Spore Germination of AM Fungi
		18.4 Impact of Climate Change in Plant-Microbe Interactions
		18.5 Conclusion
		References
	Chapter 19: Impact of Climate on Soil Microbes and Plant Health
		19.1 Introduction
		19.2 Interaction of Soil Microbiota with the Plant
		19.3 Effect of Climate on Endophytic Population
		19.4 Different Factors and Their Impact
			19.4.1 Temperature
			19.4.2 pH
			19.4.3 Salinity
			19.4.4 Water
			19.4.5 Soil Structure
		19.5 Conclusion
		References
	Chapter 20: Climate Change and Plant Diversity: Threats and Opportunities
		20.1 Introduction
		20.2 Algae Diversity and Climate Change
		20.3 Bryophytes Diversity and Climate Change
		20.4 Pteridophytes Diversity and Climate Change
		20.5 Gymnosperms Diversity and Climate Change
		20.6 Angiosperms Diversity and Climate Change
			20.6.1 Monocotyledons
			20.6.2 Dicotyledons
		20.7 Future Prospects
		References
	Chapter 21: Impact of Climate Change on Functional AM Fungi in Rhizosphere
		21.1 Introduction
		21.2 Effect of Elevated CO2 (eCO2) on AM Fungi
		21.3 Effect of Altered Temperature on AM Fungi
		21.4 Precipitation Pattern Changes Caused by Climate Change
			21.4.1 AM Fungi Provide Tolerance to Plants Under Water Stress
			21.4.2 Effects of Altered Rainfall Regimes on AM Fungal Communities
			21.4.3 Mechanisms Behind the Changes in Communities of AM Fungi in Altered Rainfall Regimes
			21.4.4 AM Fungal Community Responses Under Altered Rainfall Regimes Through Fungal Traits Study
		21.5 Effect of Increasing Nitrogen Deposition on AM Fungi
		21.6 Conclusion
		References
Part III: Impact of Climate Change on Soil-Plant Dynamics and Functionality
	Chapter 22: Phytoremediation of Polycyclic Aromatic Hydrocarbons-Contaminated Soils
		22.1 Introduction
		22.2 PAHs Sources and Uses
		22.3 Ecotoxicological Effects of PAHs
		22.4 Effects of PAHs on Human´s Health
		22.5 PAHs Removal
			22.5.1 Degradation of PAHs
				22.5.1.1 Photolysis Degradation
				22.5.1.2 Chemical Degradation
				22.5.1.3 PAHs Biodegradation
		22.6 PAHs Phytoremediation
			22.6.1 Phytoremediation by Plants
			22.6.2 Plant-Endophyte Partnerships
		22.7 Plant-Endophyte Phytoremediation
			22.7.1 Degradation and Detoxification of Organic Pollutants
			22.7.2 The Role of Biosurfactants of Endophytes in Phytoremediation
		22.8 Plant Metabolism Effects on Organic Pollutants
		22.9 Plant-Endophyte Roles in the Removal of Organic Pollutants
			22.9.1 Colonization and Survival of Endophyte
			22.9.2 Mutualistic Symbiotic Relations Between Endophytes and Host Plants
			22.9.3 Co-metabolism of Organic Pollutants
		22.10 Enzymes Effective on Organic Pollutants Degradation
		22.11 Conclusion
		References
	Chapter 23: The Impact of Climate Change on Forest Tree Species Dieback and Changes in Their Distribution
		23.1 Introduction
		23.2 The Impact of Climate Change on Tree Species Distribution
		23.3 The Impact of Climate Changes on Tree Growth and Stand Productivity
		23.4 Pinus sylvestris Dieback: A Case Study
		23.5 Picea abies Dieback: A Case Study
		23.6 Conclusions
		References
	Chapter 24: Climate Change Impacts on Soil Microorganisms that Regulate Nutrient Transformations
		24.1 Introduction
			24.1.1 Elevated CO2
			24.1.2 Increased Temperature
			24.1.3 Drought
			24.1.4 Increased Rainfall and Flooding
		24.2 Microbial Responses to Climate Change
			24.2.1 Causes of Climate Change
		24.3 Effect of Climate Change on Microorganisms
			24.3.1 Microbial Community and Methane Cycle
			24.3.2 Microbial Community and Carbon Cycle
			24.3.3 Microbial Community and Nitrogen Cycle
		24.4 Structure and Role of Microbial Community in Climate Change
		24.5 Climate Modulators and Native Regimes of the Microbial Community
		References
	Chapter 25: Deployment of Benign Bacterial Strains to Improve Soil Productivity Under Drought Stress
		25.1 Introduction
		25.2 Drought Severity and Types
		25.3 How Drought Damages Plants?
		25.4 Choosing the Crops
		25.5 Plant Growth-Promoting Bacteria
			25.5.1 Properties of PGPB
				25.5.1.1 Phosphate Solubilization
				25.5.1.2 Iron Chelation and Siderophores
				25.5.1.3 Modulation of Phytohormone
				25.5.1.4 Nitrogen Fixation
		25.6 Conclusion
		References
	Chapter 26: Biogeochemical Cycles in Soil Microbiomes in Response to Climate Change
		26.1 Introduction
		26.2 Soil Ecosystems and Their Climate Sensitivity
			26.2.1 Soil Microbiome and the Factors Regulating Its Structure and Function
			26.2.2 The Uncertainty Factors in the Soil Microbiome with Respect to Climate Change
			26.2.3 Soil Ecosystems that are Vulnerable to Climate Change
		26.3 Ecosystem Functions and Services of Soil Microbiome
		26.4 Microorganisms and Biogeochemical Cycling with Reference to Impact on Climate
			26.4.1 Carbon Cycle and Climate Change
				26.4.1.1 Carbon Cycle and the Role of Soil Microbes
				26.4.1.2 Possible Impacts of Climate Change on Carbon Cycle
			26.4.2 Nitrogen Cycle and Climate Change
				26.4.2.1 Nitrogen Cycle and the Role of Soil Microbes
				26.4.2.2 Possible Impacts of Climate Change on Nitrogen Cycle
			26.4.3 Sulfur Cycle and Climate Change
				26.4.3.1 Sulfur Cycle and the Role of Microbes
				26.4.3.2 Possible Impacts of Climate Change on Sulfur Cycle
		26.5 Emerging Issues and Future Prospects in Soil Microbiome Research in the Context of Nutrient Cycling and Climate Change
			26.5.1 Agricultural Practices, Soil Microbes, and Climate Change
			26.5.2 Climate Change and Polar Microorganisms
			26.5.3 Species Coexistence and Multitrophic Interactions in Soil Microbiome in the Context of Climate Change
			26.5.4 Microbial Evolution with Respect to Climate Change: Past and Future
			26.5.5 Mitigating Climate Change by Understanding Microbial Processes
		26.6 Conclusion
		References
	Chapter 27: Climate Change and Nutrients Dynamics of Soil
		27.1 Introduction
		27.2 Impact of Climate Changes
			27.2.1 Impact of Climate Changes on Microbial Structure and Composition
				27.2.1.1 Elevated Temperature
				27.2.1.2 Precipitation
				27.2.1.3 Elevated CO2
			27.2.2 Impact of Climate Changes on Microbial Processes
			27.2.3 Impact of Climate Changes on Nutrient Dynamics
		27.3 Microbial Feedback to Climate Changes
			27.3.1 Direct Feedback
			27.3.2 Indirect Feedback
		27.4 Role of Microbes in Climate Change Mitigation
		27.5 Conclusion and Future Perspectives
		References
	Chapter 28: Impact of Climate Change on Soil Fertility
		28.1 Introduction
		28.2 Environmental Consequences of Climate Change
		28.3 Influence of Climate Change on Soil Properties
			28.3.1 Soil Physical Properties
				28.3.1.1 Soil Texture
				28.3.1.2 Soil Structure
				28.3.1.3 Bulk Density and Porosity
				28.3.1.4 Soil Water Retention and Availability
			28.3.2 Soil Chemical Properties
				28.3.2.1 Soil pH
				28.3.2.2 Cation Exchange Capacity
				28.3.2.3 Soil Salinization
				28.3.2.4 Nutrient Cycle in Soil
				28.3.2.5 Soil Fertility and Nutrient Acquisition
			28.3.3 Soil Biological Properties
				28.3.3.1 Soil Organic Matter
				28.3.3.2 Nutrient Transformation in Soil
				28.3.3.3 Soil Microbial Biomass
		28.4 Adaptation and Mitigation of Climate Change
		28.5 Conclusion
		References
	Chapter 29: Use of Bacterial Strains to Improve Soil Productivity Under Salt Stress
		29.1 Introduction
		29.2 Salinity
			29.2.1 Types of Salinities
			29.2.2 Understanding Salinity
			29.2.3 Classification of Different Soil Types
				29.2.3.1 Saline Soil
				29.2.3.2 Sodic Soil
				29.2.3.3 Saline-Sodic Soil
			29.2.4 Crop Tolerance to Salt-Affected Soils
			29.2.5 Effect of Salinity Stress
			29.2.6 Plant Signaling During Stress
		29.3 Plant Growth-Promoting Bacteria (PGPB)
			29.3.1 Direct Mechanism
				29.3.1.1 Nutrient Acquisition
					29.3.1.1.1 Nitrogen Fixation
					29.3.1.1.2 Phosphate Solubilization
					29.3.1.1.3 Phytohormone Production
					29.3.1.1.4 Auxin
					29.3.1.1.5 Gibberellin
					29.3.1.1.6 Cytokinin
					29.3.1.1.7 Nitric Oxide
					29.3.1.1.8 Abscisic Acid
				29.3.1.2 Enzyme Secretion
					29.3.1.2.1 ACC Deaminase
			29.3.2 Indirect Mechanism
				29.3.2.1 Antibiotics
				29.3.2.2 Cell Wall-Degrading Enzymes
				29.3.2.3 Siderophores
				29.3.2.4 Volatile Organic Compounds (VOCs)
		29.4 Alleviation of Salinity Stress by Microbes
		29.5 Conclusion
		References
	Chapter 30: Impact of Climate Change on Soil Functionality
		30.1 Introduction
		30.2 Soil Functions
		30.3 Climate and Soil Interconnection and Impact of Climate Change
		30.4 Role of Soil in Climate Change Crisis
		30.5 Conclusion
		References
Part IV: Impact of Climate Change on Ecosystem Functioning
	Chapter 31: The Impacts of Climate Change on Soil Fertility in Nigeria
		31.1 Introduction
		31.2 Definition of Terms
		31.3 Methodology
			31.3.1 Climate Change and Soil Erosion Crisis in Nigeria: The South-East Dilemma
			31.3.2 How Management and Protection of Soil Resources Can Contribute to Agricultural Production in Nigeria?
			31.3.3 Understanding the Soil Resources Problem
			31.3.4 Improving Soil Fertility and Productivity Through Management
			31.3.5 Recommendations
		31.4 Conclusion
		References
	Chapter 32: Rising Greenhouse Gases in the Atmosphere: The Microbes Can Be a Solution-A Review
		32.1 Introduction
		32.2 Sources of GHGs in the Atmosphere
		32.3 Greenhouse Gases and Its Impact on Environment and Human Health
		32.4 Microbes and GHGs
			32.4.1 Microorganisms and Carbon Dioxide
			32.4.2 Microorganisms and Methane
			32.4.3 Microorganism and Nitrous Oxide
		32.5 Microbes and Biofuels
		32.6 Other Microbial Techniques Used for Enhancing GHGs Sequestration and Mitigation
			32.6.1 Enzymatic Carbon Dioxide Capture and Storage (CCS)
			32.6.2 Engineering Microorganisms for Enhanced CO2 Sequestration
			32.6.3 Manipulation of Microbial Community Structure for Mitigation of Nitrous Oxide
				32.6.3.1 Bioaugmentation with N2O-Reducing Microbiomes to Roots, Soils, or Fertilizers
				32.6.3.2 Altering the Production of Specific Signaling Molecule
		32.7 Conclusion
		References
	Chapter 33: Battling Climate Change: Improving Crop Productivity and Quality by Increasing Photosynthetic Efficiency, Deployin...
		33.1 Introduction
		33.2 Role of Plant Photosynthesis in Controlling Climate Change
			33.2.1 Role of C3 and C4 Plants in Reducing Climate Change Contributed by CO2
			33.2.2 Role of Genetic Engineering Approach for Reducing Climate Change
			33.2.3 Approaches to Improve Photosynthetic Efficiency and Crop Yield
		33.3 Role of Microbiome in Controlling Climate Change
			33.3.1 Global Carbon Cycle and CO2 Mitigation by Microflora
			33.3.2 Methane Mitigation by Methanotrophs
			33.3.3 The Nitrogen Cycle and Control of Nitrogen Oxides
		33.4 Microbes and Their Role in Sustainable Agriculture
			33.4.1 Application of Metagenomics for Studying and Developing the Beneficial Microbiome
		33.5 Application of AI and ML for Improving Plant Photosynthesis, Agricultural Productivity, Selection of Beneficial Microbiom...
		33.6 Conclusion
		References
	Chapter 34: Socio-Economic Assessment of Climate Change Impact on Biodiversity and Ecosystem Services
		34.1 Introduction
		34.2 Impact of Climate Change Globally
			34.2.1 Impact on Land and Ocean (Terrestrial and Aquatic)
			34.2.2 Impacts on Cryosphere
			34.2.3 Impact on Fisheries
			34.2.4 Impact on Tourism and Ecotourism
			34.2.5 Shifts in Species Distribution
			34.2.6 Disease Regulation
			34.2.7 Agricultural Production and Food Security
			34.2.8 Impact on Land Use Planning
			34.2.9 Unsustainable Grazing
			34.2.10 Mining
			34.2.11 Supporting Services
			34.2.12 Cultural Services
		34.3 Ecosystem-Based Services
		34.4 Socio-economic Assessment of Biodiversity and Ecosystem Services
			34.4.1 Valued Socio-Economic Components and Associated Issues
		34.5 Different Policies for Conservation of Nature and Natural Resources
		34.6 Sustainability
		34.7 Human Well-Being
		34.8 Ecological, Economic and Macroallocation Values That Are Incommensurable
		34.9 An Integrated Climate and Socio-Economic Effects and Its Effects Assessment
		34.10 Challenges to Adaptation
		34.11 Future Perspective
		References
	Chapter 35: Impact of Climate Change on Localized Plant-Microbe Signalling and Technology Advancement in Microbial Quorum Sens...
		35.1 Introduction
		35.2 Plant and Microbes
			35.2.1 Favourable Zones in Plant for Microbial Growth
				35.2.1.1 Microbiome at Rhizosphere and Secreting Components
				35.2.1.2 Microbiome at Phyllosphere and Secreting Components
				35.2.1.3 Microbiome at Endosphere and Secreting Components
			35.2.2 Contribution from Plants to Microbe Interactions by Chemicals and Signals
			35.2.3 Contribution from Microbes to Plant Interactions
			35.2.4 Climatic Responses on Plant-Microbe Interactions
				35.2.4.1 Direct Impact of Climate Change
					35.2.4.1.1 Microbial-Plant Interactions
				35.2.4.2 Indirect Effects
					35.2.4.2.1 Climate Change on Plant and Microbial Population
					35.2.4.2.2 Climate Change Alters Plant Phenology and Microbial Communities
			35.2.5 Microbes in Plant Growth Promotion
				35.2.5.1 Plant Growth-Promoting Rhizobacteria (PGPR)
				35.2.5.2 Plant Growth-Promoting Fungi (PGPF)
		35.3 Quorum Sensing: Microbial Role
			35.3.1 Biocommunication and Mechanisms
				35.3.1.1 Mechanism in Rhizosphere
				35.3.1.2 Quorum Sensing in Soil Microorganisms
			35.3.2 Synthetic Biology in Quorum Sensing
				35.3.2.1 Synthetic Biology to Manipulate QS Signal and QS-Mediated Cell Phenotypes
				35.3.2.2 Synthetic Biology for Plant Microbiome
				35.3.2.3 Synthetic Biology in Plant Breeding
		35.4 Conclusion
		References
	Chapter 36: Molecular and Cellular Mechanisms Underlying the Microbial Survival Strategies: Insights into Temperature and Nitr...
		36.1 Introduction
		36.2 Various Microbial Responses to Changes in Environmental Conditions
		36.3 Microbial Responses to Warming with Underlying Genetic Disposition
		36.4 Microbial Adaptation Strategies to Changes in Nutrient Availability (Nitrogen Starvation)
			36.4.1 Adaptation to Variable Nitrogen Availability Via Regulation of the Glutamine Synthetase
			36.4.2 Metabolic Adaptation to Nitrogen Deprivation
				36.4.2.1 Nitrogen Fixation by Diazotrophic Bacteria
				36.4.2.2 Adaptation to Nitrogen Starvation in Nondiazotrophic Bacteria
		36.5 Concluding Remarks
		References




نظرات کاربران