ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Climate Change and Soil Interactions

دانلود کتاب تغییرات آب و هوا و تعاملات خاک

Climate Change and Soil Interactions

مشخصات کتاب

Climate Change and Soil Interactions

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 0128180323, 9780128180327 
ناشر: Elsevier Science Ltd 
سال نشر: 2020 
تعداد صفحات: 822 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 40 مگابایت 

قیمت کتاب (تومان) : 28,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Climate Change and Soil Interactions به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تغییرات آب و هوا و تعاملات خاک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تغییرات آب و هوا و تعاملات خاک



تغییر آب و هوا و تعاملات خاک تعاملات سیستم خاک و استراتژی های حفاظت را در رابطه با اثرات تغییرات آب و هوا بررسی می کند. این پژوهش پیشرو در کربن سازی خاک، تنوع زیستی خاک و پوشش گیاهی را ارائه می دهد. به عنوان منبعی برای استراتژی‌ها در حفظ تعاملات مختلف برای پایداری محیط‌زیست، فصل‌های موضوعی به پاسخ میکروبی و سلامت خاک در رابطه با تغییرات آب و هوا و همچنین شیوه‌های بهبود خاک می‌پردازند.

درک سیستم های خاک، از جمله برهمکنش های مختلف فیزیکی، شیمیایی و بیولوژیکی آنها، برای بازیابی حیات سیستم خاک تحت شرایط آب و هوایی متغیر ضروری است. این کتاب به تأثیر تغییر شرایط اقلیمی بر تعاملات سودمند مختلف عملیاتی در سیستم‌های خاکی می‌پردازد و استراتژی‌های مناسبی را برای حفظ چنین فعل و انفعالاتی توصیه می‌کند.

تغییر اقلیم و تعاملات خاک

محققان کشاورزی، اکولوژیکی و محیطی را قادر می‌سازد تا اطلاعات به‌روز، پیشرفته و معتبری را در رابطه با تأثیر تغییر شرایط آب و هوایی بر تعاملات مختلف خاک به‌دست آورند و اطلاعات حیاتی برای درک مزارع در حال رشد ارائه دهد. تنوع زیستی، پایداری و تغییرات آب و هوایی.

  • به چندین هدف توسعه پایدار پیشنهاد شده توسط سازمان ملل به عنوان بخشی از دستور کار 2030 برای توسعه پایدار می پردازد
  • انواع گسترده ای از اطلاعات مرتبط را به سبکی منحصر به فرد ارائه می دهد که با موارد واقعی تأیید می شود. ، تصاویر رنگی و مطالعات موردی از سراسر جهان
  • راهبردهای مناسبی را برای حفظ فعل و انفعالات سیستم خاک تحت شرایط آب و هوایی متغیر توصیه می کند

توضیحاتی درمورد کتاب به خارجی

Climate Change and Soil Interactions examines soil system interactions and conservation strategies regarding the effects of climate change. It presents cutting-edge research in soil carbonization, soil biodiversity, and vegetation. As a resource for strategies in maintaining various interactions for eco-sustainability, topical chapters address microbial response and soil health in relation to climate change, as well as soil improvement practices.

Understanding soil systems, including their various physical, chemical, and biological interactions, is imperative for regaining the vitality of soil system under changing climatic conditions. This book will address the impact of changing climatic conditions on various beneficial interactions operational in soil systems and recommend suitable strategies for maintaining such interactions.

Climate Change and Soil Interactions

enables agricultural, ecological, and environmental researchers to obtain up-to-date, state-of-the-art, and authoritative information regarding the impact of changing climatic conditions on various soil interactions and presents information vital to understanding the growing fields of biodiversity, sustainability, and climate change.

  • Addresses several sustainable development goals proposed by the UN as part of the 2030 agenda for sustainable development
  • Presents a wide variety of relevant information in a unique style corroborated with factual cases, colour images, and case studies from across the globe
  • Recommends suitable strategies for maintaining soil system interactions under changing climatic conditions


فهرست مطالب

Cover
Climate Change and Soil Interactions
Copyright
Contents
List of contributors
About the editors
	Professional experience
	Academic honors
	Visiting assignments in various universities—widely traveled
Preface
Acknowledgments
1 Soil biodiversity conservation for mitigating climate change
	1.1 Introduction
	1.2 Soil Biodiversity and Soil Functions
	1.3 Major Anthropogenic Threats to Soil Biodiversity
		1.3.1 Disruption of litter input to soil and changes in litter quality
		1.3.2 Tillage and other soil disturbances
		1.3.3 Manipulation of nutrient status
		1.3.4 Biological invasion
		1.3.5 Pesticides and other agrochemicals
		1.3.6 Global climate change and soil biota
	1.4 How to Protect Soil Biota
		1.4.1 Soil biota protection in close to nature, protected, areas
		1.4.2 Soil biota protection in agricultural landscapes
	1.5 Conclusion
	Acknowledgment
	References
	Further Reading
2 Potential changes in forest soil carbon stocks under different climate change scenarios
	2.1 Material and methods
		2.1.1 Carbon content estimation
		2.1.2 Climatic conditions
		2.1.3 Predictions of the soil carbon stock changes
	2.2 Results
	2.3 Discussion
	2.4 Conclusions
	Acknowledgment
	References
	Further Reading
3 Methane emission from unsustainable crop production in Nepal, system of rice intensification as an option for mitigation
	3.1 Introduction
	3.2 Materials and Methods
		3.2.1 Soil sampling
		3.2.2 Laboratory analyses
		3.2.3 Gas flux measurement
		3.2.4 Data analysis
	3.3 Results and Discussion
		3.3.1 Cropping pattern and soil characteristics
		3.3.2 Temporal variability of CH4 flux in upland (Bari) and lowland (Khet)
		3.3.3 Accumulated flux
		3.3.4 Temporal variability of CH4 flux and global warming potential of system of rice intensification system
		3.3.5 System of rice intensification: an option for mitigation of methane emission
	3.4 Acknowledgments
	References
4 Heavy metal mobility in surface water and soil, climate change, and soil interactions
	4.1 Introduction
	4.2 Sources of heavy metals
	4.3 Heavy metals of serious concern
	4.4 Mobility and bioavailability of heavy metals in the environment
		4.4.1 Assessment of heavy metals mobility on soil type
	4.5 Health and environmental effects of heavy metals on the soil
		4.5.1 Health effects
		4.5.2 Environmental effects
			4.5.2.1 Effects of heavy metals mobility on agricultural practices
			4.5.2.2 Effects of heavy metal mobility on aquatic and terrestrial animals
			4.5.2.3 Effects of heavy metal mobility on surface water
	4.6 Inevitability of climate change
		4.6.1 Effects of climate change in the mobility of heavy metals
		4.6.2 Bioavailability of heavy metals with weather pattern in South Africa
		4.6.3 Assessment of heavy metals type based on weather pattern
	4.7 Existing technologies to minimize heavy metals mobility, bioavailability in Soil and water, and their limitations
		4.7.1 Existing water treatment technologies for the removal of heavy metals
		4.7.2 Existing technologies to minimize heavy metals mobility, bioavailability, and their limitations in soil
	4.8 Novel/Current technologies to minimize heavy metals mobility regardless of climatic change
		4.8.1 Bioremediation
			4.8.1.1 Phytoremediation
			4.8.1.2 Application of clay materials in soil remediation
		4.8.2 Electrokinetic extraction
	4.9 Currently developed prototype and their activities in reducing the mobility of heavy metals
		4.9.1 Asymmetrical alternating current electrochemistry
		4.9.2 Use of biochar
	4.10 Summary
	References
	Further Reading
5 Managing organic amendments in agroecosystems to enhance soil carbon storage and mitigate climate change
	5.1 Introduction
	5.2 Benefits of Organic Amendments in the Improvement of Soil Quality to Cope With Climate Change
	5.3 Overview of the Agronomic Practices to Minimize Soil Organic Carbon Outputs
	5.4 Use of Amendments to Maximize Soil Carbon Inputs
		5.4.1 Relevant organic amendments: biowaste-based amendments, manures, and animal slurries
			5.4.1.1 Animal manures
			5.4.1.2 Municipal wastes: solid wastes and sewage sludge
			5.4.1.3 Compost and biochar
		5.4.2 Negative effects of the use of biowaste-based amendments, manures, and animal slurries as soil amendments
			5.4.2.1 Potential soil contamination
			5.4.2.2 Nutrient leaching
			5.4.2.3 Effects on NH3 and greenhouse gas emissions
		5.4.3 Strategies adopted to overcome the negative effects of using biowaste-based amendments, manures, and animal slurries ...
	5.5 Study Case: The Efficiency of Different Fertilization Systems With C Emissions
	5.6 Concluding Remarks
	References
	Further Reading
6 Seed priming: state of the art and new perspectives in the era of climate change
	6.1 Introduction
	6.2 Effect of Climate Change on Yield and Food Security
	6.3 Effect of Climate Change and Geographical Distribution of Crops
	6.4 Seed Priming
		6.4.1 History of seed priming
		6.4.2 Seed priming techniques
			6.4.2.1 Hydropriming
			6.4.2.2 Osmopriming
			6.4.2.3 Solid matrix priming
			6.4.2.4 Chemopriming
			6.4.2.5 Thermopriming
			6.4.2.6 Biopriming
			6.4.2.7 Hormopriming
	6.5 Knowledge Gap and Future Perspective
		6.5.1 Limitations in current priming techniques
	6.6 New Aspects in Seed Priming
		6.6.1 Magnetopriming (MFs)
		6.6.2 Ionizing radiation treatments
			6.6.2.1 Gamma radiation
			6.6.2.2 X-rays
			6.6.2.3 Ultraviolet radiation
			6.6.2.4 Microwaves potentialities in seed technology
			6.6.2.5 Electron paramagnetic resonance
	6.7 Conclusion
	Acknowledgments
	Conflict of Interest
	References
	Further Reading
7 Use of lysimeters for monitoring soil water balance parameters and nutrient leaching
	7.1 Introduction
	7.2 Lysimeter Technique
		7.2.1 Soil filling procedure
			7.2.1.1 Lysimeter types
				7.2.1.1.1 Nonweighing lysimeter
				7.2.1.1.2 Weighable gravitation lysimeter
				7.2.1.1.3 Weighable groundwater lysimeter
			7.2.1.2 Housing of lysimeter vessels
	7.3 Case Studies for Lysimeter Application
		7.3.1 Determination of soil water balance parameters
			7.3.1.1 Lysimeter research activities for optimizing soil water management under dry steppe conditions
			7.3.1.2 Results and discussion
				7.3.1.2.1 Precipitation
				7.3.1.2.2 Actual evapotranspiration
				7.3.1.2.3 Soil moisture
		7.3.2 Leaching of phosphorus
			7.3.2.1 Lysimeter research activities to protect water resources
				7.3.2.1.1 Long-term lysimeter measurements
				7.3.2.1.2 Cultivation of the lysimeter
				7.3.2.1.3 Soil sampling
				7.3.2.1.4 Leachate sampling, water analyses, and assessments
			7.3.2.2 Results and discussion
				7.3.2.2.1 Effect of mineral P fertilization on soil PDL content
				7.3.2.2.2 Total P concentrations in NWLYS leachates as functions of soil PDL contents
	7.4 Conclusions
	7.5 Acknowledgments
	References
	Further Reading
8 Consequences of land-use changes for soil quality and function, with a focus on the EU and Latin America
	8.1 Land-Use Change in the International Agendas
	8.2 The Direction of Land-Use Changes, Drivers, and Trends
	8.3 The Influence of Land-Use Changes on Soil Quality and Functions
		8.3.1 Intensive and extensive use of arable land
		8.3.2 Transformation of cultivated and grassland to forest and its consequence
		8.3.3 Transformation of forest to crop or grassland
		8.3.4 Reclamation of the degraded land and restoration of abandoned land
	8.4 Conclusion and Implications for Industry, Policy, and Science
	References
9 Soil as a complex ecological system for meeting food and nutritional security
	9.1 Introduction
	9.2 Soil: A Complex Ecological System?
		9.2.1 Functions of soil and their importance to environmental balance
			9.2.1.1 Soil for meeting food and nutritional security
	9.3 Soil Degradation: Impacts on Climate and Society
	9.4 Soil System: Modeling Difficulties
		9.4.1 Soil–arbuscular mycorrhizal fungi–vegetation interactions to ensure meeting food demand
		9.4.2 Soil conservation for nutritional security
	Acknowledgments
	References
10 Microbial approach for alleviation of potentially toxic elements in agricultural soils
	10.1 Introduction
	10.2 Global Scenario of Soils in Crops: Contamination and Climate Changes
	10.3 Toxic Elements in Agricultural Soils
		10.3.1 Inorganic toxicants
		10.3.2 Organic toxicants
	10.4 Microbial Approach
		10.4.1 Bioremediation strategies for a balanced environment
		10.4.2 Beneficial interactions between microorganisms and plants: the main microorganisms in this scenario
			10.4.2.1 Mycorrhiza
			10.4.2.2 Plant growth–promoting rhizobacteria
				10.4.2.2.1 Biological nitrogen fixation
	10.5 Future Perspectives
	10.6 Acknowledgments
	References
11 Alleviation of soil salinization and the management of saline soils, climate change, and soil interactions
	11.1 Introduction
	11.2 Soil Salinization
		11.2.1 Indicators of soil salinity
		11.2.2 Measuring soil salinity
	11.3 Sources of Soil Salinization
	11.4 Soil Salinization and Climate Change
	11.5 Impacts of Salinity
		11.5.1 Effects on soil
		11.5.2 Effects on hydrosphere
		11.5.3 Effects on plants
			11.5.3.1 Effects of salinity on growth of microorganisms
			11.5.3.2 Effects of salinity on plant growth
			11.5.3.3 Salt-tolerant plants
			11.5.3.4 Crops in saline soils
	11.6 Alleviating Soil Salinization
	11.7 Management of Saline Soils
		11.7.1 Water management
			11.7.1.1 Use of microorganisms
			11.7.1.2 Management of irrigation using saline water
		11.7.2 Sustainable agriculture management practices
	11.8 Conclusions
	References
	Further Reading
12 Soil salinization and climate change
	12.1 The Formation and Importance of Soil
	12.2 The Impact of Agricultural Activities on Climate Change
	12.3 Climate Change and Its Effects on Salinization
	12.4 Salinization and Alkalization
	12.5 Salinity and Alkalinity Problem in the World
	12.6 Salinity and Alkalinity in Turkey
	12.7 What are the Risks of Soil Salinity and Alkalinity?
	12.8 Management of Saline and Alkaline Soils and Plant Production in These Soils
	12.9 Conclusion
	References
13 Soil salinity risk in a climate change scenario and its effect on crop yield
	13.1 Overview
	13.2 Soil Salinization Processes
		13.2.1 Soil salinity
		13.2.2 Soil salinity indicators
		13.2.3 Soil sodicity
			13.2.3.1 Soil sodicity indicators
	13.3 Crops Responses to Salinity
		13.3.1 Salinity effects on plants
		13.3.2 Crops tolerance to salinity
		13.3.3 Combined effects of salinity and environmental conditions on crop responses
	13.4 Assessment of Water Quality for Irrigation
	13.5 Modeling Soil Salinization
	13.6 Salinity Management
	13.7 Case Study—Evaluation of Water Quality for Irrigation, and Its Potential Effects on Soil Structure and on Crop Yields ...
	13.8 Acknowledgments
	13.9 List of Symbols
	References
14 Organic matter decomposition under warming climatic conditions
	14.1 The Scale of Climate Change Problem
	14.2 Soil Warming and Organic Matter Content
	14.3 Factors Affecting on Carbon Turnover Time
		14.3.1 Dependence of organic matter decomposition on the external condition
		14.3.2 Deepening greenhouse effect and its possible effect on carbon cycle
	14.4 Labile and Nonlabile Soil Organic Fraction Content
	14.5 Models of Soil Organic Matter Decomposition in Climate Warming
	References
	Further Reading
15 Organic matter decomposition under warming climate conditions
	15.1 Decomposition
	15.2 Global Warming and Soil Attributes
	15.3 Global Warming: Changes in the Production and Quality of Soil Organic Matter
	15.4 Global Warming: Changes in the Composition of Decomposer Communities in the Soil
	15.5 Efficiency and Speed of Decomposition Under Global Warming
	15.6 Final Consideration
	References
16 Heavy metal mobility in soil under futuristic climatic conditions
	16.1 Heavy Metal Ability, Toxicity, and Migration
	16.2 Correlation Between Heavy Metal Mobility and Toxicity
	16.3 Futuristic Climate Conditions and Heavy Metal Mobility
	16.4 Bioavailability of Heavy Metals Under Futuristic Climate Conditions
	16.5 Remediation of Heavy Metal Contaminated Soils Under Futuristic Climate Change
	16.6 Conclusion
	References
	Further Reading
17 Sustainability science—below and above the ground as per the United Nation’s sustainable development goals
	17.1 Introduction
	17.2 “Soil” in the Sustainable Development Goals
		17.2.1 SDG 2—“Zero hunger” and soil
		17.2.2 SDG 3—“Good health and well-being for people” and soil
		17.2.3 SDG 6—“Clean water and sanitation” and soil
		17.2.4 Soil and SDG 11—“Sustainable cities and communities”
		17.2.5 Soil and SDG 14—Life below water
		17.2.6 Soil and SDG 15—Life on land
	17.3 Conclusion
	References
	Further Reading
18 Hydraulic properties of soil under warming climate
	18.1 Introduction
	18.2 Climate Change - Causes of Warming Climate
	18.3 Soil Hydraulic Properties
	18.4 Role of Hydraulic Properties in Crop Production
	18.5 Factor Affecting the Soil Hydraulic Properties Under Warming Climate
		18.5.1 Soil factors
			18.5.1.1 Soil texture and structure
			18.5.1.2 Soil porosity
			18.5.1.3 Bulk density
			18.5.1.4 Organic matter content of the soil
			18.5.1.5 Soil biota
			18.5.1.6 Soil surface and subsurface characteristics
			18.5.1.7 Soil temperature
		18.5.2 Soil-crop management and land-use factors
	18.6 Effects of Warming Climate on Hydraulic Properties
	18.7 Adaptation Strategies for Management of Hydraulic Properties for Higher Crop Productivity Under Warming Climate
	18.8 Conclusion
	Acknowledgments
	References
	Further Reading
19 Methane and carbon dioxide release from wetland ecosystems
	19.1 What Are Wetlands?
	19.2 What Are Wetland Soils?
	19.3 Soil Organic Matter and CH4 and CO2 Formation
	19.4 Processes of CH4 and CO2 Formation
	19.5 CH4 and CO2 Emission and Effect of Temperature
	19.6 How Are CH4 and CO2 Leaving a Wetland?
		19.6.1 Gas emissions from the bare soil, sediments, or free water surface
		19.6.2 Emissions of gasses mediated by the plants
		19.6.3 Spontaneous release of gasses by ebullition process
	19.7 Fluxes of CH4 and CO2 From Soils in Different Wetland Ecosystems
		19.7.1 Fluxes of CH4
		19.7.2 Fluxes of CO2
	19.8 Fluxes of CH4 and CO2 From Wetland Soils Under Changing Climate
	References
20 The effect of climate change on mycorrhizae
	20.1 Mycorrhizae: Plants, Fungi, and Soil
	20.2 Warming and Mycorrhizal Fungi
	20.3 Plant Alterations as a Regulatory Factor From Development
	20.4 Soil Alterations as a Regulatory Factor for the Development of Mycobionts
		20.4.1 Symbiosis and mycorrhizal benefits under warming and environmental changes
	20.5 Changes in Plants, Fungi, and Symbiosis Influence the Environment
	20.6 Final Considerations
	References
21 Exploring soil responses to various organic amendments under dry tropical agroecosystems
	21.1 Introduction
	21.2 Status of Soil Health for Tropical Ecosystems
	21.3 Role of Soil Productivity Under Present Climate Change Scenario
	21.4 Emerging Ameliorating Agents for Restoring Soil Health
		21.4.1 Organic agriculture
		21.4.2 Microbial inoculants and biological fertilizers
		21.4.3 Vermicompost
		21.4.4 Biochar
	21.5 Impact of Soil Amendments on Soil Physicochemical Properties
	21.6 Impact of Soil Amendments on Soil Biological Properties
	21.7 Impact of Soil Amendments on Soil Respiration and Microbial biomass
	21.8 Constraints to Organic Agriculture in Tropical Soils
	21.9 Conclusion and Possible Recommendations
	Acknowledgments
	References
22 Climate-resilient and smart agricultural management tools to cope with climate change-induced soil quality decline
	22.1 Climate Change-Induced Impact on Soil Quality
	22.2 Land-Use Change With Agriculture Intensification as a Driver for Soil Quality Decline
	22.3 Mitigation and Adaptation Strategies Toward Climate-Resilient and Climate-Smart Agriculture—Direct and Indirect Strate...
		22.3.1 Land-use planning
		22.3.2 Optimizing year-round production of primary and cover crop—a climate change strategy in Canada
		22.3.3 How to optimize livestock/cropping systems based on semivirtual farmlets
		22.3.4 The role of composting and composts in soil quality
		22.3.5 Microbial processes in soil organic matter
			22.3.5.1 The carbon cycle
			22.3.5.2 The nitrogen cycle
			22.3.5.3 The phosphorus cycle
		22.3.6 Conservation agriculture
		22.3.7 Reducing nutrient losses from agriculture and increasing nitrogen-use efficiency to mitigate greenhouse gas emissions
			22.3.7.1 Improve the nitrogen-use efficiency through agronomic management practices
			22.3.7.2 Fertilizer-related mitigation
		22.3.8 Climate change, water availability, intensification of animal industries and soil nutrient levels—an Australian case...
	22.4 Conclusion
	References
	Further Reading
23 Plant–soil interactions in soil organic carbon sequestration as a restoration tool
	23.1 Introduction—The Importance of Organic Matter in the Environment
		23.1.1 Structure and types of organic matter
		23.1.2 Organic matter and soil quality
	23.2 Soil Depletion Problem
		23.2.1 The importance of the carbon loss problem in a soil
	23.3 Soil Carbon Sequestration
	23.4 Impact of Afforestation and Energy Plant Cultivation on Sequestration Carbon in Soil
	23.5 Summary
	Acknowledgments
	References
	Further Reading
24 Plant–soil interactions as a restoration tool
	24.1 Introduction
		24.1.1 Coal mining and land degradation
		24.1.2 Reclamation practices
	24.2 Plant–Soil Interaction
		24.2.1 Types of interaction
		24.2.2 Factors influencing plant–soil interaction
		24.2.3 Soil as an agent for plant growth
			24.2.3.1 Provider of nutrition and establish soil food webs
			24.2.3.2 Mycorrhiza: a plant root/fungus interaction
			24.2.3.3 Nitrogen fixation
			24.2.3.4 Soil physical factors influencing root growth
			24.2.3.5 Biological parameters
		24.2.4 Plants affect the process of pedogenesis in coal mine degraded soil
	24.3 Plant–Soil Interaction as a Restoration Tool
		24.3.1 Plant–soil interaction as a tool for bioremediation in the mining area
		24.3.2 Phytoremediation
		24.3.3 Case study: Development of Technosol properties and recovery of carbon stock after 16 years of revegetation on coal ...
			24.3.3.1 Description of the study site
			24.3.3.2 Vegetation survey
			24.3.3.3 Soil analysis
	24.4 Conclusion
	Acknowledgment
	References
	Further Reading
25 Soil enzymes in a changing climate
	25.1 Introduction
	25.2 Extracellular Enzymes in Soils—Synthesis and Functions
	25.3 Extracellular Enzyme Activity—Methods of Assessment
	25.4 Direct and Indirect Extracellular Enzyme Activity Responses to Climate Warming, Droughts, and Excess Water
	25.5 Influence of Climate Change on Interactions Between Microbes and Plants
	25.6 Alterations of Extracellular Enzyme Activity for Purposes of Bioremediation or Carbon Sequestration
	25.7 Conclusion
	Acknowledgment
	References
26 Soil health and climate change
	26.1 Introduction
	26.2 Temperature Sensitivity of Soil Organic Carbon and Nitrogen
	26.3 Situation of Soil Organic Carbon Storage in Croplands
	26.4 Impact of Climate Change on Soil Physical, Chemical, and Biological Properties
	26.5 Increasing Soil Organic Carbon to Mitigate Greenhouse Gases and Increase Climate Resiliency
	26.6 Models to Simulate Soil Health and Climate Change
	26.7 Conclusion
	References
27 Soil carbon sequestration and carbon flux under warming climate
	27.1 Atmospheric Carbon
	27.2 Increased Atmospheric CO2 and Plant Growth
	27.3 Organic Compounds in the Tissues of Plants and Animals, and in Cells of Microorganisms
	27.4 Carbon Sequestration in Terrestrial Ecosystems
	27.5 Global Warming and the Sequestration of Carbon in the Soil
	27.6 Final Consideration
	References
	Further Reading
Index
Back Cover




نظرات کاربران