دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات ویرایش: نویسندگان: Ronald S. Calinger سری: ISBN (شابک) : 002318342X, 9780023183423 ناشر: Prentice Hall سال نشر: 1995 تعداد صفحات: 818 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
کلمات کلیدی مربوط به کتاب کلاسیک ریاضیات: ریاضی، علوم، ریاضیات، تاریخ
در صورت تبدیل فایل کتاب Classics of Mathematics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کلاسیک ریاضیات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مناسب برای دوره های کارشناسی و منتخب دوره های کارشناسی ارشد در تاریخ ریاضیات و تاریخ علم. این جلد ویرایش شده شامل بیش از 130 انتخاب از ریاضیدانان برجسته از A 'h-mose' تا هیلبرت و نوتر است. مقدمههای فصل شامل تاریخچه مختصری از ریاضیات است که بر اساس تجزیه و تحلیل متن انتقادی و آخرین تحقیقات انجام شده است. قبل از هر مطالعه، بیوگرافی قابل توجهی از نویسنده آن نوشته شده است.
Appropriate for undergraduate and select graduate courses in the history of mathematics, and in the history of science. This edited volume of readings contains more than 130 selections from eminent mathematicians from A `h-mose' to Hilbert and Noether. The chapter introductions comprise a concise history of mathematics based on critical textual analysis and the latest scholarship. Each reading is preceded by a substantial biography of its author.
Introduction ____From A Mathematician\'s Apology - G. H. HARDY ____From \"Mathematics as an Element in the History of Thought\" - ALFRED NORTH WHITEHEAD I. Protomathematics in the Late Age of Stone and in Ancient Mesopotamia and Egypt ____Introduction ________1. From The Exact Sciences in Antiquity - O. NEUGEBAUER ________2. From the A\'h-mose or Rhind Papyrus - JAMES R. NEWMAN ________3. Problem No. 14 of the Moscow Papyrus - BATTISCOMBE GUNN AND T. ERIC PEET ________4. The Ancient Hebrews and Protomathematics Based on the Old Testament of the Bible II. The Rise of Theoretical Mathematics in Ancient Greece ____Introduction ____Proclus ________Biography of Proclus ________5. ____From \"The Catalogue of Geometers\" - PROCLUS ____Pythagoras and His Followers ________Biography of Pythagoras of Samos ________6. From On Marvels 6 - APOLLONIUS PARADOXAGRAPHUS ________7. From Book VII of the Elements: Definitions - EUCLID ________8. From Prior Analytics i.23 (Irrationality of the Square Root of 2) - ARISTOTLE ________9. From On Nicomachus\'s Introduction to Arithmetic (Arithmetic, Geometric, and Harmonic Means) - IAMBLICHUS ________10. From Commentary on Ptolemy\'s Harmonics - PORPHYRY ________11. From Metaphysics A5 - ARISTOTLE ________12. From Commentary on Euclid i (Sum of the Angles of a Triangle) - PROCLUS ________13. From Convivial Questions viii. 2. (Pythagoras\'s Theorem) - PLUTARCH ________14. From On Slips in Greetings 5 - LUCIAN ________15. From Elements X. Scholium (The Irrational or Incommensurable) - EUCLID ________16. From Elements X. Definitions (Commensurable and Incommensurable) - EUCLID ____Hippocrates of Chios ________Biography of Hippocrates of Chios ________17. From Commentary on Aristotle\'s Physics A 2 - PHILOPONUS ________18. From Commentary on Aristotle\'s Physics A 2 (Quadrature of Lunules, the Crescent-shaped Figures Between Two Intersecting Arcs of Circles) - SIMPLICIUS ____Plato ________Biography of Plato ________19. From the Republic VI.510 (Approach to Mathematics) - PLATO ________20. From the Republic VII.522-28 (The Quadrivium) - PLATO ________21. From the Timaeus 53-56 - PLATO ____Eudoxus ________Biography of Eudoxus ________22. From Book V of the Elements. Definitions and Propositions 1, 7, 9, and 10 (Theory of Proportions) - EUDOXUS-EUCLID ________23. From Book XII.2 of the Elements (Method of Approximation, the So-called Method of Exhaustion) - EUCLID ____Aristotle ________Biography of Aristotle ________24. From Posterior Analytics i.10 (First Principles or Theory of Statements) - ARISTOTLE ________25. From the Metaphysics (1066-67) (The Infinite, the Essence of the Archimedean Postulate) - ARISTOTLE ________26. From the Metaphysics (1068b-1069a) and Physics (230a-240a) (On the Continuous and Zeno\'s Paradoxes) - ARISTOTLE III. Mathematics in the West During Hellenistic and Roman Times ____Introduction ____Euclid ________Biography of Euclid ________27. From Book I of the Elements: Definitions, Postulates, Axioms, and Propositions 1-13 - EUCLID ________28. From Book I of the Elements: Propositions 27-32 (Theory of Parallels) - EUCLID ________29. From Book I of the Elements: Proposition 47 (Pythagorean Theorem) - EUCLID ________30. From Book VII of the Elements\'. Propositions 1 and 2 (Euclidean Algorithm) - EUCLID ________31. From Book IX of the Elements: Propositions 14 (Fundamental Theorem in the Theory of Numbers), 20 (Infinitude of Primes), and 25-30 ________32. From Book X of the Elements: Propositions 1-3 - EUCLID ____Archimedes ________Biography of Archimedes ________33. From Sphere and Cylinder I: Greeting and Assumptions - ARCHIMEDES ________34. From Sphere and Cylinder I: Propositions 33 and 34 (Surface and Volume of a Sphere) - ARCHIMEDES ________35. Measurement of a Circle: Propositions 1-3 (Approximation of PI Using in Essence Upper and Lower Limits) - ARCHIMEDES ________36. From Quadrature of the Parabola: Introduction and Propositions 17-24 - ARCHIMEDES ________37. From The Equilibrium of Planes I: Propositions 6 and 7 (Principle of the Lever) - ARCHIMEDES ________38. From The Sand-Reckoner: Introduction and Section on Large Numbers - ARCHIMEDES ________39. From The Cattle Problem (Indeterminate Analysis) - ARCHIMEDES ____Eratosthenes ________Biography of Eratosthenes ________40. From Introduction to Arithmetic /: Chapters XII and XIII (Sieve for Finding Primes) - NICOMACHUS OF GERASA ________41. From On the Circular Motion of the Heavenly Bodies i. 10.52 (Estimate of the Circumference of the Earth) - CLEOMEDES ____Apollonius ________Biography of Apollonius ________42. From Conics: Introduction to Book One - APOLLONIUS ________43. From Conics: Propositions 7 and 11 (A Novel Method of Construction of Sections) - APOLLONIUS ____Claudius Ptolemy ________Biography of Claudius Ptolemy ________44. From the Syntaxis or Almagest i (Trigonometry: Table of Sines) - CLAUDIUS PTOLEMY ____Diophantus ________Biography of Diophantus ________45. From the Dedication to Arithmetica (Algebraic Notation) - DIOPHANTUS ________46. From Arithmetica (Origins of Number Theory) - DIOPHANTUS IV. Arabic Primacy with Chinese, Indian and Maya Contributions ____Introduction ____(Muhammad ibn Musa) al-Khwarizmi ________Biography of (Muhammad ibn Musa) al-Khwarizmi ________47. From The Book of Algebra and Almucabola (Quadratic Equations in Algebra: Verbal Form) - AL-KHWaRIZMi ____\'Umar al-Khayyami ________Biography of \'Umar al-Khayyami ________48. From the Algebra - \'UMAR AL-KHAYYAMI ____Marquis Zhang Cang ________Biography of Marquis Zhang Cang ________49. From a Description of the Nine Chapters on the Mathematical Art (Jiuzhang suanshu) ____Bhaskara II ________Biography of Bhaskara II ________50. From Lilavati (Arithmetic and Geometry) - BHASKARA II ________51. From Bijagnita (Algebra) - BHASKARA II ____Maya Civilization and Mathematics ________Commentary ________52. From The Ancient Maya - SYLVANUS GRISWOLD MORLEY ________52a. The Mathematical Notation of the Ancient Maya - MICHAEL P. CLOSS V. The Medieval-Renaissance-Reformation Periods in Europe ____Introduction by Joseph E. Brown, Rensselaer Polytechnic Institute ____Leonardo of Pisa ________Biography of Leonardo of Pisa ________53. From Liber abbaci (The Rabbit Problem) - LEONARDO OF PISA ____Nicole Oresme ________Biography of Nicole Oresme ________54. From De configurationibus (The Latitude of Forms) - NICOLE ORESME ________55. From Questiones super geometriam Euclidis (The Latitude of Forms) - NICOLE ORESME ____Girolamo Cardano ________Biography of Girolamo Cardano ________56. From the Ars Magna - GIROLAMO CARDANO ____Francois Viete ________Biography of Francois Viete ________57. From In artem analyticem isagoge (The New Algebra) - FRANCOIS VIETE ____Simon Stevin ________Biography of Simon Stevin ________58. From De Thiende (Decimal Fractions) - SIMON STEVIN ____John Napier ________Biography of John Napier ________59. From Mirifici logarithmorum canonis constructio (Logarithms) - JOHN NAPIER VI. The Scientific Revolution at Its Zenith (1620-1720) ____Introduction ____Algebra, Analytic Geometry, and Arithmetic ________Biography of Rene Descartes ________60. From the Regulae (Rule IV: \"In search for the truth of things a method is indispensable\") - RENE DESCARTES ________61. From Discours de la Methode (Four Fundamental Rules of Logic) - RENE DESCARTES ________62. From La geometrie (1637) (Theory of Equations) - RENE DESCARTES ________63. From La geometrie (1637) (The Principle of Nonhomogeneity) - RENE DESCARTES ________Biography of Pierre de Fermat ________64. From a Letter to Bernard Frenicle de Bessy (October 10, 1640) (Are Numbers of the Form 2^(n+1) Prime When n = 2^t?) - PIERRE DE FERMAT ________65. From Two Letters of February 1657 [Challenge to Mathematicians: Find an Infinity of Integer Solutions for the \"Pell\" Equation (that is, x^2 - Ay^2 = 1), where A may be any Nonsquare Integer] - PIERRE DE FERMAT ________Biography of Blaise Pascal ________66. From Traite du triangle arithmetique... (The So-called Pascal Triangle) - BLAISE PASCAL ____Origins of Infinitesimal Calculus ________Biography of Johannes Kepler ________67. From Nova stereometria doliorum vinariorum (1615) (Integration Methods) - JOHANNES KEPLER ________Biography of Galileo Galilei ________68. From Two New Sciences (1638) (Paradoxes of Infinity: The Relationship Between Points and Lines, the Order of an Infinity, Infinitesimals, the Concept of a Continuum) - GALILEO GALILEI ________69. From \"On the Transformation and Simplification of the Equations of Loci\" (ca. 1640) (Integration) - PIERRE DE FERMAT ________70. From \"On a Method for the Evaluation of Maxima and Minima\" (... His algorithm was subsequently developed into the method of the \"characteristic triangle,\" dx, dy, and ds.) - PIERRE DE FERMAT ________71. From \"On the Sines of a Quadrant of a Circle\" (1659) (... Pascal\'s paper partially rejects indivisibles and presages the indefinite integral.) - BLAISE PASCAL ____The Discovery of Differential and Integral Calculus ________Biography of Gottfried Wilhelm Leibniz ________72. From \"A New Method for Maxima and Minima as Well as Tangents, Which Is Impeded Neither by Fractional Nor by Irrational Quantities, and a Remarkable Type of Calculus for This (1684) (Differential Calculus) - GOTTFRIED WILHELM LEIBNIZ ________73. From \"Supplementum geometriae dimensoriae ... , \"in Acta Eruditorum (1693) (The Fundamental Theorem of Calculus) - GOTTFRIED WILHELM LEIBNIZ ________Biography of Isaac Newton ________74. From Specimens of a Universal [System of] Mathematics (written ca. 1684) - ISAAC NEWTON ________75. From a Letter to Henry Oldenburg on the Binomial Series (June 13, 1676) - ISAAC NEWTON ________76. From a Letter to Henry Oldenburg on a General Method for Finding Quadratures (October 24, 1676) - ISAAC NEWTON ________77. From Principia Mathematica (1687) (Prime and Ultimate Ratios: The Theory of Limits) - ISAAC NEWTON ________78. From the Introduction to the Tractatus de quadratura curvarum (1704) - ISAAC NEWTON ____The Bernoullis ________Biography of Jakob Bernoulli ________79. From Ars Conjectandi (1713) (The Law of Large Numbers) - JAKOB BERNOULLI ________Biography of Johann Bernoulli ________80. From \"The Curvature of a Ray in Nonuniform Media\" (1697) (The Brachistochrone) - JOHANN BERNOULLI VII. The Age of Enlightenment and the French Revolution (1720-1800) ____Introduction ____Elaboration and Criticism of Infinitesimal Analysis ________Biography of Brook Taylor ________81. From Methodus Incrementorum Directa et Inversa (1715) (The Taylor Series) - BROOK TAYLOR ________Biography of George Berkeley ________82. From The Analyst (1734) (Criticism of the Foundations of Calculus) - GEORGE BERKELEY ________Biography of Colin Maclaurin ________83. From Treatise of Fluxions (1742) (On Series and Extremes) - COLIN MACLAURIN ________Biography of Jean Le-Rond d\'Alembert ________84. From \"Differential,\" Encyclopedie, Vol. 4 (1754) (On Limits) - JEAN D\'ALEMBERT ________Biography of Leonhard Euler ________85. From Introductio in analysin infinitorum I (1748) (Functions, Logarithms, and Trigonometry) - LEONHARD EULER ________Biography of Joseph-Louis Lagrange ________86. From \"Attempt at a New Method for Determining the Maxima and Minima of Indefinite Integral Formulas\" (1760-61) (The Calculus of Variations) - JOSEPH-LOUIS LAGRANGE ________87. From Mathematical Thought from Ancient to Modem Times (1990) (Taylor Series with Remainder) - MORRIS KLINE ____Topology, Number Theory, and Probability ________88. From the Problem of the Seven Bridges of Konigsberg (1736) (The Origins of Topology) - LEONHARD EULER ________89. From \"Theorems on Residues Obtained by the Division of Powers\" (1758/ 59) (Number Theory: Power Residues) - LEONHARD EULER ________90. From \"Demonstrations of Certain Arithmetical Theorems\" (1738) (A proof of Fermat\'s great theorem-x^n + y^n = z^n has no positive integral solutions for n > 2 for the case n = 4.) - LEONHARD EULER ________Biography of Pierre-Simon Laplace ________91. From Essais philosophique sur les probabilites (1814) (The Theory of Probability) - PIERRE-SIMON LAPLACE VIII. The Nineteenth Century ____Introduction by Helena M. Pycior, University of Wisconsin-Milwaukee ____Algebra ________Biography of Carl Friedrich Gauss ________92. From \"New Proof of the Theorem That Every Integral Rational Algebraic Function of One Variable Can Be Decomposed into Real Factors of the First or Second Degree\" (1799) - CARL FRIEDRICH GAUSS ________Biography of Niels (Henrik) Abel ________93. From a Memoir on Algebraic Equations, Proving the Impossibility of a Solution of the General Equation of the Fifth Degree (1824) - NIELS ABEL ________Biography of Evariste Galois ________94. The Testamentary Letter Sent to Auguste Chevalier (May 29, 1832) (Group Theory and Abelian Integrals) - EVARISTE GALOIS ________Biography of William Rowan Hamilton ________95. From Elements of Quaternions (1866) (On Quaternions a Generalization of Complex Numbers) - WILLIAM ROWAN HAMILTON ________Biography of George Boole ________96. From An Investigation of the Laws of Thought (1854) (The Joining of Algebra and Logic) - GEORGE BOOLE ____Non-Eudidean Geometries ________Biography of Nikolai Ivanovich Lobachevsky ________97. From The Theory of Parallels ( 1840) (Hyperbolic Geometry) - NIKOLAI IVANOVICH LOBACHEVSKY ________Biography of (Georg Friedrich) Bernhard Riemann ________98. From \"On the Hypotheses Which Lie at the Foundations of Geometry\" (1854) (Elliptic Geometry and a Distinction Between Boundlessness and Infinitude of Straight Lines) - BERNHARD RIEMANN ____The Development and Arithmetization of Mathematical Analysis ________Biography of (Jean-Baptiste-) Joseph Fourier ________99. From Joseph Fourier 1768-1830 - I. GRATTAN-GUINNESS ________100. From Theorie analytique de la chaleur (1822) - JOSEPH FOURIER ________101. From \"On the Continuity of Functions Defined by Power Series\" (1826) (The Binomial Series; Convergence of Power Series) - NIELS ABEL ________Biography of Augustin-Louis Cauchy ________102. From Cours d\'analyse de l\'Ecole Royale Polytechnique (1821) - AUGUSTIN-LOUIS CAUCHY ________103. From Resume des lecons ... sur le calcul infinitesimal (1823) (On the Derivative as a Limit) - AUGUSTIN-LOUIS CAUCHY ________104. From Resume des lecons ... sur le calcul infinitesimal (1823) (First Rigorous Proof About Derivatives) - AUGUSTIN-LOUIS CAUCHY ________Biography of Karl (Theodor Wilhelm) Weierstrass ________105. From Lectures on the Differential Calculus (1861) - KARL WEIERSTRASS ________106. From a Letter to Hermann Amandus Schwarz (May 5, 1875) - KARL WEIERSTRASS ________107. From Encounters with Mathematics (1977) (Riemann on Physics and Partial Differential Equations) - LARS GARDING ____Number Theory, Set Theory, and Symbolic Logic ________108. From Carl Friedrich Gauss: A Biography (1970) (A Discussion of the Disquisitiones arithmeticae, Including Congruences and the Fundamental Theorem of Arithmetic) - TORD HALL ________Biography of Ernst Eduard Kummer ________109. From \"On the Theory of Complex Numbers\" (1847) (Theory of Ideal Prime Factors) - ERNST EDUARD KUMMER ________Biography of (Julius Wilhelm) Richard Dedekind ________110. From Stetigkeit und irrationale Zahlen (1872) (Continuity, Irrational Numbers, and Dedekind Cuts) - RICHARD DEDEKIND ________111. From Was sind und was sollen die Zahlen? (1888) (Simply Infinite Systems) - RICHARD DEDEKIND ________Biography of Georg (Ferdinand) Cantor ________112. From Grundlagen einer Allgemeinen Mannigfaltigkeitslehre (1883) (Fundamental Series) - GEORG CANTOR ________113. From a Letter to Richard Dedekind (1899) (Transfinite Cardinal Numbers and Set Theory) - GEORG CANTOR ________Biography of (Friedrich Ludwig) Gottlob Frege ________114. From Begrijfsschrift (1879) (Symbolic Logic) - GOTTLOB FREGE ________115. From Die Grundlagen der Arithmetik (1884) (Definition of Number in Logical Terms) - GOTTLOB FREGE ________Biography of Giuseppe Peano ________116. From Arithmetices principia (1889) (Set of Axioms for Integers) - GIUSEPPE PEANO ________Biography of Bertrand (Arthur William) Russell ________117. From Introduction to Mathematical Philosophy (1919) (The Definition of Number) - BERTRAND RUSSELL IX.____The Early Twentieth Century to 1932 ____Introduction by Helena M. Pycior, University of Wisconsin-Milwaukee ____Creativity and the Paris Problems ________Biography of (Jules-) Henri Poincare ________118. From Science and Method (1908) - HENRI POINCARE ________Biography of David Hilbert ________119. From \"Mathematical Problems: Lecture Delivered Before the International Congress of Mathematicians at Paris in 1900\" (Paris Problems and the Formalist Program) - DAVID HILBERT ________Biography of Ernst (Friedrich Ferdinand) Zermelo ________120. From a Letter to David Hilbert (September 24, 1904) - ERNST ZERMELO ____Foundational Crisis and Undecidability ________121. From Correspondence Between Bertrand Russell and Gottlob Frege (June 16 and 22, 1902) (Russell Paradox and the Logicist School) - BERTRAND RUSSELL AND GOTTLOB FREGE ________122. From a Letter to Jean van Heijenoort Concerning the Publication of the Russell-Frege Correspondence (November 23, 1962) - BERTRAND RUSSELL ________123. From Principia Mathematica (1910) (Russell\'s Solution to the Burali-Forti Paradox and to His Own) - ALFRED NORTH WHITEHEAD AND BERTRAND RUSSELL ________Biography of Luitzen E(gbertus) J(an) Brouwer ________124. From \"Intuitionism and Formalism\" (1912) - L. E. J. BROUWER ________125. From \"Intuitionistic Reflections on Formalism\" (1927) - L. E. J. BROUWER ________Biography of Kurt Godel ________126. From \"Einige metamathematische Resultate uber Entscheidungsdefinitheit und Widerspruchsfreiheit\" (Some Metamathematical Results on Completeness and Consistency, 1930) - KURT GODEL ________127. From \"Uber formal unentscheidbare Satze der Principia mathematica und verwandter Systeme I (1931) (Incompleteness Theorem: Undecidability) - KURT GODEL ________128. From \"Uber Vollstandigkeit und Widerspruchsfreiheit\" (\"On Completeness and Consistency,\" 1931) - KURT GODEL Selected Topics: The Development of General Abstract Theories ____129. From the Preface to \"Analysis Situs\" (1895) (Algebraic Topology) - HENRI POINCARE ____130. Poincare and Topology - P. S. ALEKSANDROV ____131. From An Introduction to the Foundations and Fundamental Concepts of Mathematics (1966) - HOWARD EVES AND CARROLL V. NEWSOM ____Biography of Henri (Leon) Lebesgue ____132. From \"The Development of the Integral Concept\" (1926) - HENRI LEBESGUE ____Biography of (Amalie) Emmy Noether ____133. Proof of a Fundamental Theorem in the Theory of Algebras (1932) - R. BRAUER (KONIGSBERG), H. HASSE (MARBURG), AND E. NOETHER (GOTTINGEN) ____Biography of George David Birkhoff ____134. From \"Proof of the Ergodic Theorem\" (1931) - GEORGE DAVID BIRKHOFF INDEX