دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Osamu Morita
سری:
ISBN (شابک) : 9781032315034, 9781003310068
ناشر: CRC Press
سال نشر: 2023
تعداد صفحات: [393]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 Mb
در صورت تبدیل فایل کتاب Classical Mechanics in Geophysical Fluid Dynamics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مکانیک کلاسیک در دینامیک سیالات ژئوفیزیکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Contents Preface Author bio 1. Introduction 1.1. Physical Dimensions and Units 1.2. Significant Numbers 1.3. Coordinate Systems 1.3.1. Cartesian Coordinates 1.3.2. Plane Polar Coordinates and Cylindrical Coordinates 1.3.3. Spherical Coordinates 1.4. Coordinate Transformation 1.5. Taylor Series 1.6. Problems 2. Kinematics 2.1. Vector Calculus 2.1.1. Basis Vectors 2.1.2. Addition of Vectors 2.1.3. Subtraction of Vectors 2.1.4. Scalar Product of Vectors 2.1.5. Vector Product of Vectors 2.2. Displacement and Velocity 2.3. Velocity and Acceleration 2.4. One-Dimensional Motion 2.4.1. Motion of Constant Velocity 2.4.2. Motion of Constant Acceleration 2.5. Two-Dimensional Motion 2.5.1. Elliptic and Parabolic Trajectory 2.5.2. Uniform Circular Motion 2.6. Acceleration in Plane Polar Coordinates 2.7. Problems 3. Force and Motion 3.1. Newton’s Three Laws of Motion 3.2. Falling Motion under Gravity 3.2.1. The Case of No Air Resistance 3.2.2. The Case of Air Resistance Proportional to Falling Speed 3.2.3. The Case of Air Resistance Proportional to the Square of Falling Speed 3.3. Parabolic Motion 3.4. Constrained Motion 3.4.1. Sliding Motion on a Frictionless Slope 3.4.2. Sliding Motion on a Frictional Slope 3.4.3. Simple Pendulum 3.4.4. Mass–Spring Harmonic Oscillator 3.5. Centripetal Force in Uniform Circular Motion 3.6. Problems 4. Inertial Force 4.1. Relative Motion 4.2. Inertial Frames and Non-Inertial Frames 4.2.1. Inertial Frames 4.2.2. Non-Inertial Frames 4.3. Inertial Forces in a Rotating System 4.3.1. The Coriolis Force 4.3.2. Foucault Pendulum 4.4. Problems 5. Work and Energy 5.1. Transformation of the Equation of Motion 5.2. Conservative Forces and Potential Energy 5.3. Potential Energy of a Spring 5.4. The Law of Mechanical Energy Conservation 5.5. The Unit of Work and Energy 5.6. The Mechanical Equivalent of Heat 5.7. Problems 6. Oscillatory Motion 6.1. Damped Oscillations 6.2. Forced Oscillations 6.2.1. The Case of Non-Resistive Force 6.2.2. Forced Oscillation with the Resistive Force Proportional to Speed 6.3. Coupled Pendulums 6.4. Coupled Oscillations 6.5. Problems 7. Mechanics of Rigid Bodies 7.1. The Equation of Motion and the Center of Mass of Many-Particle Systems 7.2. A Two-Particle System 7.3. The Center of Mass of Rigid Bodies 7.4. Center of Gravity of Many-Particle Systems and Rigid Bodies 7.5. How to Obtain the Center of Mass 7.5.1. Empirical Method 7.5.2. The Method Using the Definition of the Center of Mass 7.5.3. The Method Using the Total Torque of Gravity about the Center of Gravity 7.6. Problems 8. Momentum and Impulse 8.1. Transformation of the Equation of Motion 8.2. Conservation of Momentum 8.2.1. The Case of Many-Body System 8.2.2. The Case of Two-Body System 8.3. Collision of Disks 8.3.1. Inelastic Collisions 8.3.2. Elastic Collisions 8.3.3. Totally Inelastic Collisions 8.4. Collision of a Body with a Floor and a Wall 8.5. Two-Dimensional Collisions 8.6. Scattering Cross Sections 8.6.1. Scattering by a Rigid Cylinder 8.6.2. Scattering by a Rigid Sphere 8.7. Rocket Motion 8.8. Problems 9. Angular Momentum Equation 9.1. Equation of Motion for Rotational Motion 9.2. Torque and Angular Momentum 9.2.1. Torque 9.2.2. A Force Couple 9.2.3. Angular Momentum 9.3. The Law of Angular Momentum Conservation 9.4. Equation for Many-Particle Systems 9.5. Static Equilibrium of Rigid Bodies 9.5.1. Conditions for Translational Motion 9.5.2. Condition for Rotational Motion 9.5.3. Some Examples 9.6. Problems 10. Motion of Rigid Bodies 10.1. Rotational Motion about a Fixed Axis 10.1.1. Tangential Velocity and Angular Velocity 10.1.2. Rotational Motion of Rigid Bodies 10.1.3. The Moment of Inertia of Rigid Bodies of Various Shapes 10.1.4. The Parallel Axes Theorem 10.1.5. Physical Pendulum 10.1.6. Borda’s Pendulum 10.2. Two-Dimensional Motion of Rigid Bodies 10.2.1. Governing Equations 10.2.2. Rolling Motion of Rigid Bodies on a Plane without Sliding 10.2.3. Rolling Down Motion of Rigid Bodies on a Slope without Sliding 10.2.4. Examples of Two-Dimensional Motion of Rigid Bodies 10.3. General Rotation of a Rigid Body 10.3.1. Inertia Tensor 10.3.2. Kinetic Energy of Three-Dimensional Rotating Motion of a Rigid Body 10.3.3. Principal Axes and Principal Moments of Inertia 10.4. Euler Angles and Euler’s Equation 10.4.1. Euler Angles 10.4.2. Euler’s Equations 10.4.3. Free Rotation of a Rigid Body 10.4.4. Lagrange Top 10.5. Free Nutation and Precession of the Earth 10.5.1. Free Nutation of the Earth 10.5.2. Precession of the Earth 10.6. Problems 10.7. Reference 11. Orbital Motion of Planets 11.1. The Law of Universal Gravitation 11.2. Gravitational Force due to a Body 11.3. Universal Gravitation and Gravity 11.4. Oceanic Tides 11.5. The Effect of Oceanic Tides 11.6. Orbital Motion of Planets and Kepler’s Three Laws 11.7. Proof of Kepler’s Three Laws 11.8. Escape Velocity 11.9. General Orbits due to a Central Force 11.10. Rutherford Scattering 11.11. Problems 11.12. Reference 12. Introduction to Geophysical Fluid Dynamics 12.1. Individual Rate of Change and Local Rate of Change 12.2. The Continuity Equation 12.3. Forces Exerting on Fluid Parcels 12.3.1. The Pressure Gradient Force 12.3.2. Viscous Force 12.4. Inertial Forces 12.5. The Momentum Equations 12.6. Simplified Coordinate Systems 12.6.1. The f-plane Approximation 12.6.2. The β-plane Approximation 12.7. The Boussinesq Approximation 12.8. Scale Analysis 12.9. Basic Balance Equations 12.9.1. The Hydrostatic Equation 12.9.2. The Geostrophic Approximation 12.9.3. The Quasi-Geostrophic Approximation 12.9.4. The Thermal Flow Balance 12.10. Circulation and Vorticity 12.10.1. Circulation 12.10.2. Absolute circulation 12.10.3. Vorticity 12.10.4. The Quasi-Geostrophic Vorticity Equation 12.10.5. Ertel Potentialvorticity 12.11. Problems 12.12. Reference 13. Phenomena in Geophysical Fluids: Part I 13.1. The Taylor–Proudman Theorem 13.2. Ekman Layer 13.2.1. Ekman Boundary Layer 13.2.2. Oceanic Ekman Layer 13.2.3. Convergent Ekman Flow and Spin Down 13.3. Kelvin–Helmholtz Instability 13.3.1. A Two-Layer Model 13.3.2. A Continuously Stratified Model 13.4. Rayleigh–Bénard Convection 13.5. Taylor Vortices 13.5.1. Rayleigh’s Criterion 13.5.2. Viscous Taylor–Couette Flow 13.6. Problems 13.7. References 14. Phenomena in Geophysical Fluids: Part II 14.1. Phase Velocity and Group Velocity 14.1.1. Phase Velocity 14.1.2. Wave Dispersion and Group Velocity 14.2. Shallow Water Gravity Waves 14.3. Internal Gravity Waves of Two Layer Fluids 14.4. Internal Gravity Waves in the Continuously Stratified Fluid 14.4.1. Buoyancy Oscillation 14.4.2. Internal Gravity Waves 14.4.3. Structure of Internal Gravity Waves 14.4.4. Mountain Waves 14.4.5. Physical Derivation of the Intrinsic Frequency of Internal Gravity Waves 14.5. Inertio-Gravity Waves 14.5.1. Derivation from the Governing Equations 14.5.2. Physical Derivation of the Intrinsic Frequency of Inertio-Gravity Waves 14.6. Problems 15. Phenomena in Geophysical Fluids: Part III 15.1. Inertial Oscillations 15.2. Rossby Waves 15.2.1. Non-Divergent Rossby Waves 15.2.2. The Reflection of Rossby Waves 15.2.3. Rossby Waves with Free Surface 15.2.4. Rossby Waves in the Laboratory System 15.3. Barotropic Instability 15.3.1. Rayleigh’s Inflection Point Theorem 15.3.2. Howard’s Semi-Circle Theorem 15.3.3. Physical Interpretation of Barotropic Instability 15.4. Baroclinic Instability 15.4.1. Eady’s Model 15.4.2. Laboratory Experiments of Baroclinic Waves 15.5. Geostrophic Turbulence 15.5.1. Three-Dimensional Turbulence 15.5.2. Two-Dimensional Turbulence 15.5.3. Geostrophic Turbulence in Various Fluid Systems 15.6. Problems 15.7. References A. Acceleration in Spherical Coordinates B. Vector Analysis B.1. Vector Identities B.2. Vector Operations in Various Coordinates B.2.1. Cartesian Coordinates B.2.2. Cylindrical Coordinates B.2.3. Spherical Coordinates C. Useful Constants and Parameters D. Answers to Problems E. Further Reading Index