ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Classical Mechanics in Geophysical Fluid Dynamics

دانلود کتاب مکانیک کلاسیک در دینامیک سیالات ژئوفیزیکی

Classical Mechanics in Geophysical Fluid Dynamics

مشخصات کتاب

Classical Mechanics in Geophysical Fluid Dynamics

ویرایش: [2 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 9781032315034, 9781003310068 
ناشر: CRC Press 
سال نشر: 2023 
تعداد صفحات: [393] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 13 Mb 

قیمت کتاب (تومان) : 40,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 15


در صورت تبدیل فایل کتاب Classical Mechanics in Geophysical Fluid Dynamics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مکانیک کلاسیک در دینامیک سیالات ژئوفیزیکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Contents
Preface
Author bio
1. Introduction
	1.1. Physical Dimensions and Units
	1.2. Significant Numbers
	1.3. Coordinate Systems
		1.3.1. Cartesian Coordinates
		1.3.2. Plane Polar Coordinates and Cylindrical Coordinates
		1.3.3. Spherical Coordinates
	1.4. Coordinate Transformation
	1.5. Taylor Series
	1.6. Problems
2. Kinematics
	2.1. Vector Calculus
		2.1.1. Basis Vectors
		2.1.2. Addition of Vectors
		2.1.3. Subtraction of Vectors
		2.1.4. Scalar Product of Vectors
		2.1.5. Vector Product of Vectors
	2.2. Displacement and Velocity
	2.3. Velocity and Acceleration
	2.4. One-Dimensional Motion
		2.4.1. Motion of Constant Velocity
		2.4.2. Motion of Constant Acceleration
	2.5. Two-Dimensional Motion
		2.5.1. Elliptic and Parabolic Trajectory
		2.5.2. Uniform Circular Motion
	2.6. Acceleration in Plane Polar Coordinates
	2.7. Problems
3. Force and Motion
	3.1. Newton’s Three Laws of Motion
	3.2. Falling Motion under Gravity
		3.2.1. The Case of No Air Resistance
		3.2.2. The Case of Air Resistance Proportional to Falling Speed
		3.2.3. The Case of Air Resistance Proportional to the Square of Falling Speed
	3.3. Parabolic Motion
	3.4. Constrained Motion
		3.4.1. Sliding Motion on a Frictionless Slope
		3.4.2. Sliding Motion on a Frictional Slope
		3.4.3. Simple Pendulum
		3.4.4. Mass–Spring Harmonic Oscillator
	3.5. Centripetal Force in Uniform Circular Motion
	3.6. Problems
4. Inertial Force
	4.1. Relative Motion
	4.2. Inertial Frames and Non-Inertial Frames
		4.2.1. Inertial Frames
		4.2.2. Non-Inertial Frames
	4.3. Inertial Forces in a Rotating System
		4.3.1. The Coriolis Force
		4.3.2. Foucault Pendulum
	4.4. Problems
5. Work and Energy
	5.1. Transformation of the Equation of Motion
	5.2. Conservative Forces and Potential Energy
	5.3. Potential Energy of a Spring
	5.4. The Law of Mechanical Energy Conservation
	5.5. The Unit of Work and Energy
	5.6. The Mechanical Equivalent of Heat
	5.7. Problems
6. Oscillatory Motion
	6.1. Damped Oscillations
	6.2. Forced Oscillations
		6.2.1. The Case of Non-Resistive Force
		6.2.2. Forced Oscillation with the Resistive Force Proportional to Speed
	6.3. Coupled Pendulums
	6.4. Coupled Oscillations
	6.5. Problems
7. Mechanics of Rigid Bodies
	7.1. The Equation of Motion and the Center of Mass of Many-Particle Systems
	7.2. A Two-Particle System
	7.3. The Center of Mass of Rigid Bodies
	7.4. Center of Gravity of Many-Particle Systems and Rigid Bodies
	7.5. How to Obtain the Center of Mass
		7.5.1. Empirical Method
		7.5.2. The Method Using the Definition of the Center of Mass
		7.5.3. The Method Using the Total Torque of Gravity about the Center of Gravity
	7.6. Problems
8. Momentum and Impulse
	8.1. Transformation of the Equation of Motion
	8.2. Conservation of Momentum
		8.2.1. The Case of Many-Body System
		8.2.2. The Case of Two-Body System
	8.3. Collision of Disks
		8.3.1. Inelastic Collisions
		8.3.2. Elastic Collisions
		8.3.3. Totally Inelastic Collisions
	8.4. Collision of a Body with a Floor and a Wall
	8.5. Two-Dimensional Collisions
	8.6. Scattering Cross Sections
		8.6.1. Scattering by a Rigid Cylinder
		8.6.2. Scattering by a Rigid Sphere
	8.7. Rocket Motion
	8.8. Problems
9. Angular Momentum Equation
	9.1. Equation of Motion for Rotational Motion
	9.2. Torque and Angular Momentum
		9.2.1. Torque
		9.2.2. A Force Couple
		9.2.3. Angular Momentum
	9.3. The Law of Angular Momentum Conservation
	9.4. Equation for Many-Particle Systems
	9.5. Static Equilibrium of Rigid Bodies
		9.5.1. Conditions for Translational Motion
		9.5.2. Condition for Rotational Motion
		9.5.3. Some Examples
	9.6. Problems
10. Motion of Rigid Bodies
	10.1. Rotational Motion about a Fixed Axis
		10.1.1. Tangential Velocity and Angular Velocity
		10.1.2. Rotational Motion of Rigid Bodies
		10.1.3. The Moment of Inertia of Rigid Bodies of Various Shapes
		10.1.4. The Parallel Axes Theorem
		10.1.5. Physical Pendulum
		10.1.6. Borda’s Pendulum
	10.2. Two-Dimensional Motion of Rigid Bodies
		10.2.1. Governing Equations
		10.2.2. Rolling Motion of Rigid Bodies on a Plane without Sliding
		10.2.3. Rolling Down Motion of Rigid Bodies on a Slope without Sliding
		10.2.4. Examples of Two-Dimensional Motion of Rigid Bodies
	10.3. General Rotation of a Rigid Body
		10.3.1. Inertia Tensor
		10.3.2. Kinetic Energy of Three-Dimensional Rotating Motion of a Rigid Body
		10.3.3. Principal Axes and Principal Moments of Inertia
	10.4. Euler Angles and Euler’s Equation
		10.4.1. Euler Angles
		10.4.2. Euler’s Equations
		10.4.3. Free Rotation of a Rigid Body
		10.4.4. Lagrange Top
	10.5. Free Nutation and Precession of the Earth
		10.5.1. Free Nutation of the Earth
		10.5.2. Precession of the Earth
	10.6. Problems
	10.7. Reference
11. Orbital Motion of Planets
	11.1. The Law of Universal Gravitation
	11.2. Gravitational Force due to a Body
	11.3. Universal Gravitation and Gravity
	11.4. Oceanic Tides
	11.5. The Effect of Oceanic Tides
	11.6. Orbital Motion of Planets and Kepler’s Three Laws
	11.7. Proof of Kepler’s Three Laws
	11.8. Escape Velocity
	11.9. General Orbits due to a Central Force
	11.10. Rutherford Scattering
	11.11. Problems
	11.12. Reference
12. Introduction to Geophysical Fluid Dynamics
	12.1. Individual Rate of Change and Local Rate of Change
	12.2. The Continuity Equation
	12.3. Forces Exerting on Fluid Parcels
		12.3.1. The Pressure Gradient Force
		12.3.2. Viscous Force
	12.4. Inertial Forces
	12.5. The Momentum Equations
	12.6. Simplified Coordinate Systems
		12.6.1. The f-plane Approximation
		12.6.2. The β-plane Approximation
	12.7. The Boussinesq Approximation
	12.8. Scale Analysis
	12.9. Basic Balance Equations
		12.9.1. The Hydrostatic Equation
		12.9.2. The Geostrophic Approximation
		12.9.3. The Quasi-Geostrophic Approximation
		12.9.4. The Thermal Flow Balance
	12.10. Circulation and Vorticity
		12.10.1. Circulation
		12.10.2. Absolute circulation
		12.10.3. Vorticity
		12.10.4. The Quasi-Geostrophic Vorticity Equation
		12.10.5. Ertel Potentialvorticity
	12.11. Problems
	12.12. Reference
13. Phenomena in Geophysical Fluids: Part I
	13.1. The Taylor–Proudman Theorem
	13.2. Ekman Layer
		13.2.1. Ekman Boundary Layer
		13.2.2. Oceanic Ekman Layer
		13.2.3. Convergent Ekman Flow and Spin Down
	13.3. Kelvin–Helmholtz Instability
		13.3.1. A Two-Layer Model
		13.3.2. A Continuously Stratified Model
	13.4. Rayleigh–Bénard Convection
	13.5. Taylor Vortices
		13.5.1. Rayleigh’s Criterion
		13.5.2. Viscous Taylor–Couette Flow
	13.6. Problems
	13.7. References
14. Phenomena in Geophysical Fluids: Part II
	14.1. Phase Velocity and Group Velocity
		14.1.1. Phase Velocity
		14.1.2. Wave Dispersion and Group Velocity
	14.2. Shallow Water Gravity Waves
	14.3. Internal Gravity Waves of Two Layer Fluids
	14.4. Internal Gravity Waves in the Continuously Stratified Fluid
		14.4.1. Buoyancy Oscillation
		14.4.2. Internal Gravity Waves
		14.4.3. Structure of Internal Gravity Waves
		14.4.4. Mountain Waves
		14.4.5. Physical Derivation of the Intrinsic Frequency of Internal Gravity Waves
	14.5. Inertio-Gravity Waves
		14.5.1. Derivation from the Governing Equations
		14.5.2. Physical Derivation of the Intrinsic Frequency of Inertio-Gravity Waves
	14.6. Problems
15. Phenomena in Geophysical Fluids: Part III
	15.1. Inertial Oscillations
	15.2. Rossby Waves
		15.2.1. Non-Divergent Rossby Waves
		15.2.2. The Reflection of Rossby Waves
		15.2.3. Rossby Waves with Free Surface
		15.2.4. Rossby Waves in the Laboratory System
	15.3. Barotropic Instability
		15.3.1. Rayleigh’s Inflection Point Theorem
		15.3.2. Howard’s Semi-Circle Theorem
		15.3.3. Physical Interpretation of Barotropic Instability
	15.4. Baroclinic Instability
		15.4.1. Eady’s Model
		15.4.2. Laboratory Experiments of Baroclinic Waves
	15.5. Geostrophic Turbulence
		15.5.1. Three-Dimensional Turbulence
		15.5.2. Two-Dimensional Turbulence
		15.5.3. Geostrophic Turbulence in Various Fluid Systems
	15.6. Problems
	15.7. References
A. Acceleration in Spherical Coordinates
B. Vector Analysis
	B.1. Vector Identities
	B.2. Vector Operations in Various Coordinates
		B.2.1. Cartesian Coordinates
		B.2.2. Cylindrical Coordinates
		B.2.3. Spherical Coordinates
C. Useful Constants and Parameters
D. Answers to Problems
E. Further Reading
Index




نظرات کاربران