ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Classical and Quantum Description of Plasma and Radiation in Strong Fields

دانلود کتاب توصیف کلاسیک و کوانتومی پلاسما و تابش در میدان‌های قوی

Classical and Quantum Description of Plasma and Radiation in Strong Fields

مشخصات کتاب

Classical and Quantum Description of Plasma and Radiation in Strong Fields

دسته بندی: فیزیک پلاسما
ویرایش:  
نویسندگان:   
سری: Springer Theses 
ISBN (شابک) : 303073546X, 9783030735463 
ناشر: Springer 
سال نشر: 2021 
تعداد صفحات: 279 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 8 مگابایت 

قیمت کتاب (تومان) : 56,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Classical and Quantum Description of Plasma and Radiation in Strong Fields به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب توصیف کلاسیک و کوانتومی پلاسما و تابش در میدان‌های قوی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب توصیف کلاسیک و کوانتومی پلاسما و تابش در میدان‌های قوی



این پایان‌نامه چندین جنبه مهم از دینامیک پلاسما را در میدان‌های الکترومغناطیسی با شدت بسیار بالا ارائه می‌کند، زمانی که اثرات الکترودینامیک کوانتومی باید در نظر گرفته شود. این کار برای نسل آینده امکانات لیزری چند پتاواتی که در آن این فیزیک آزمایش خواهد شد بسیار اهمیت دارد. بخش اول شامل مقدمه ای است که از الکترودینامیک کلاسیک و کوانتومی در میدان های قوی تا توصیف جنبشی پلاسما در تعامل با چنین میدان هایی را شامل می شود. این می تواند به عنوان یک آموزش پیشرفته در نظر گرفته شود که برای محققان و دانشجویان تازه وارد در این زمینه بسیار مفید خواهد بود. بخش دوم مشارکت های اصلی را در تجزیه و تحلیل نشانه های واکنش تابش کلاسیک و کوانتومی بر روی تابع توزیع ذرات باردار و طیف فوتون توضیح می دهد و منجر به پیشرفت های قابل توجهی در این موضوع می شود. این نتایج سپس به تجزیه و تحلیل به اصطلاح آبشارهای QED که برای درک بهتر برخی از پدیده‌های اخترفیزیکی و مسائل اساسی فیزیک اهمیت اساسی دارند، گسترش می‌یابد. در نهایت، این کتاب مسیرهای آینده را برای جامعه تعامل لیزر-پلاسما با شدت بالا مورد بحث قرار می‌دهد. انتظار می رود که نتایج ارائه شده در این پایان نامه با فعال شدن امکانات جدید چند پت وات بیشتر و بیشتر مرتبط شود.


توضیحاتی درمورد کتاب به خارجی

This thesis presents several important aspects of the plasma dynamics in extremely high intensity electromagnetic fields when quantum electrodynamics effects have to be taken into account. This work is of utmost importance for the forthcoming generation of multipetawatt laser facilities where this physics will be tested. The first part consists of an introduction that extends from classical and quantum electrodynamics in strong fields to the kinetic description of plasmas in the interaction with such fields. This can be considered as an advanced tutorial which would be extremely useful to researchers and students new to the field. The second part describes original contributions on the analysis of the signatures of classical and quantum radiation reaction on the distribution function of the charged particles and of the photon spectrum, and leads to significant advances on this topic. These results are then extended to the analysis of the so-called QED cascades which are of central importance for a better understanding of some astrophysical phenomena and basic physics problems. Finally, the book discusses future directions for the high intensity laser–plasma interaction community. The results presented in this thesis are expected to become more and more relevant as the new multipetawatt facilities become operative.



فهرست مطالب

Supervisor’s Foreword
Acknowledgements
Contents
List of Symbols
Conventions and Units
1 Introduction
	1.1 Strong-Field Regime of Quantum Electrodynamics
	1.2 Schwinger-Sauter Mechanism
	1.3 Strong-Field QED Processes
	1.4 Sources of Strong Fields and High-Energy Particles in Nature and in the Laboratory
	1.5 Laser-Plasma Interaction at Ultra-High Intensity
	1.6 Presentation of This Work
	References
Theoretical Background
2 Classical Electrodynamics
	2.1 Outline
	2.2 Classical Field Theory
		2.2.1 Euler-Lagrange Equations
		2.2.2 Noether\'s Theorem
		2.2.3 Poincaré Invariance
		2.2.4 Energy-Momentum Tensor
	2.3 Classical Electrodynamics
		2.3.1 Lagrangian
		2.3.2 Equations of Motion
		2.3.3 Energy-Momentum
	2.4 Radiation by Moving Charges
		2.4.1 Physical Picture
		2.4.2 Retarded and Advanced Propagators
		2.4.3 Liénard-Wiechert Potentials
		2.4.4 Radiated Electromagnetic Field
		2.4.5 Larmor Formula
		2.4.6 Radiated Spectrum
		2.4.7 Charged Particle in a Plane-Wave Field
		2.4.8 Linear and Nonlinear Thomson Scattering
		2.4.9 Radiation by an Ultra-Relativistic Particle in Arbitrary Motion
	2.5 Classical Radiation-Reaction
		2.5.1 The Lorentz-Abraham-Dirac Equation
		2.5.2 The Landau-Lifshitz Equation
		2.5.3 Charged Particle in a Constant-Uniform Magnetic Field with RR
		2.5.4 Charged Particle in a Plane-Wave Field with RR
		2.5.5 Limit of Applicability of CED and Classical Radiation Dominated Regime (CRDR)
	References
3 Quantum Electrodynamics
	3.1 Outline
	3.2 Quantum Field Theory
		3.2.1 Canonical Quantization of Classical Fields
		3.2.2 Fock Space
		3.2.3 The S-Matrix
	3.3 Quantum Electrodynamics
		3.3.1 Lagrangian
		3.3.2 Equations of Motion
	3.4 Strong Field QED
		3.4.1 Coherent States
		3.4.2 Furry Picture
		3.4.3 Volkov States
		3.4.4 Position Space SFQED Feynman Rules
	3.5 Non-linear Compton Scattering
	3.6 Non-linear Breit-Wheeler Pair Production
	3.7 Quantum Radiation-Reaction
	References
4 Kinetic Description
	4.1 Outline
	4.2 Kinetic Description
		4.2.1 The Klimontovich Equation
		4.2.2 The Vlasov Equation
	4.3 Kinetic Description of Radiation-Reaction
		4.3.1 Motivation
		4.3.2 Vlasov Equation with Classical RR
		4.3.3 Vlasov Equation with Quantum RR
		4.3.4 Vlasov Equation with Pair-Production
	4.4 Extended PIC Method for SFQED
		4.4.1 Classical RR Pusher
		4.4.2 Monte-Carlo Module
	References
From Quantum to Classical Radiation Reaction
5 Effect of RR on the Electron Distribution Function
	5.1 Outline
	5.2 Dynamics of a Radiating Electron in Classical and Quantum Electrodynamics
		5.2.1 Dynamics of a Classical Radiating Electron
		5.2.2 Radiation Friction Force Acting on an Ultra-Relativistic Electron
		5.2.3 Dynamics of a Quantum Radiating Electron
	5.3 From Quantum to Classical Radiation Reaction for Ultra-relativistic Electrons
		5.3.1 Kinetic Point of View: The Linear Boltzmann Equation
		5.3.2 Toward the Classical Limit: The Fokker-Planck Approach
		5.3.3 Domain of Validity of the Fokker-Planck and Quantum-Corrected Landau-Lifshitz Descriptions
	5.4 Local Temporal Evolution of Integrated Quantities
		5.4.1 Local Energy Moments of the Collision Operators
		5.4.2 Equations of Continuity for the Electrons and Photons
		5.4.3 Equation of Evolution of the Mean Momentum
	5.5 Global Temporal Evolution of Average Quantities
		5.5.1 Conservation of the Number of Electrons and Total Energy, and Photon Production Rate
		5.5.2 Equations of Evolution
		5.5.3 The Perturbative Expansion
		5.5.4 Electron Mean Energy
		5.5.5 Variance in Energy: Radiative Cooling vs. Energy Spreading
		5.5.6 Third Order Moment and Link to the Quenching of Radiation Losses
	5.6 Conclusion
	References
6 Domain of Validity of the Different Descriptions and Numerical Simulations
	6.1 Outline
	6.2 Domain of Validity of the Three Descriptions
		6.2.1 Case of an Initially Symmetric Energy Distribution
		6.2.2 Case of an Initially Non-symmetric Energy Distribution
		6.2.3 Physical Implications
	6.3 Stochastic (Fokker-Planck) Pusher
	6.4 Numerical Results
		6.4.1 Constant-Uniform Magnetic Field
		6.4.2 Linearly Polarized Plane-Wave
		6.4.3 Electron Population with a Broad Energy Dispersion
	6.5 Interpretation of the ``Vlasov Terms\'\'
	6.6 Conclusion
	References
7 Photon Distribution Function
	7.1 Outline
	7.2 High-Energy Photon Emission and Its Back Reaction
		7.2.1 Photon Emission Rate and Energy Spectrum
		7.2.2 Radiation Reaction
		7.2.3 High Energy Photon Spectrum Accounting for Radiation Reaction
	7.3 Numerical Simulations
		7.3.1 Method
		7.3.2 Results
		7.3.3 Electron Beam Head-On Collision with an UHI Plane-Wave
		7.3.4 Hot (Maxwell-Jüttner) Electron Population Radiating in a Constant Magnetic Field
	7.4 Conclusions
	References
8 QED Cascades in Counterpropagating Plane-Waves
	8.1 Outline
	8.2 Motion of a Single Electron in Two Counter-Propagating Plane-Waves
		8.2.1 Without RR
		8.2.2 With RR
	8.3 Evolution of the Electron Distribution Function …
		8.3.1 Equations of Evolution of the Energy Moments of the Electron and Photon Distribution Functions in the Presence of a Source
		8.3.2 Asymptotic Energy Spread
		8.3.3 Asymptotic Third Order Moment
		8.3.4 Average Energy
		8.3.5 Evolution of an Initial Cold Electron Distribution Function
		8.3.6 Interaction of a Hot Maxwell-Jüttner Distribution Function with a Uniformly Rotating Electric Field
	8.4 Evolution of the Electron Distribution Function …
		8.4.1 Equations of Evolution of the Energy Moments of the Electron and Photon Distribution Functions in the Presence of a Source and with Pair Production
		8.4.2 Number of Particles
		8.4.3 Average Energy
		8.4.4 Asymptotic Energy Spread
	8.5 Conclusion
	References
Nonlinear Breit-Wheeler Pair Production with Laguerre-Gauss Beams
9 Orbital Angular Momentum of Light: A State of the Art
	9.1 Introduction
	9.2 Paraxial Optics
		9.2.1 The Helmholtz Equation
		9.2.2 The Paraxial Wave Equation
	9.3 Linear and Angular Momentum of Light
		9.3.1 Linear Momentum of Light
		9.3.2 Angular Momentum of Light
	9.4 Gaussian Beam
	9.5 Higher-Order Beams
		9.5.1 Laguerre-Gaussian Beams
	9.6 Angular Momentum of LG Beams
	References
10 Soft Pair Showers in the Collision of Gamma Rays with Laguerre-Gauss Beams
	10.1 Outline
	10.2 The Nonlinear Breit-Wheeler Process
	10.3 Characteristics of the LG Beams
	10.4 Nonlinear Breit-Wheeler Pair Production in an External LG Beam
	10.5 Conclusion
	References
11 Conclusion and Perspectives
Appendix A Classical Electrodynamics
	A.1 Bessel Functions
	A.1.1. Bessel Functions of the First Kind
	A.1.2 Modified Bessel Functions of the Second Kind
	A.2 Airy Functions
	A.3 Tensor Identities
	A.3.1 Levi-Civita Symbols
	A.3.2 Constant Field Tensor Identities
	A.4 Light-Cone Coordinates
	A.5 Solution of the Equation of Motion of a Charged Particle in a Plane-Wave Electromagnetic Field Without RR
	A.6 Non-linear Thomson Scattering
	A.6.1 Circularly Polarized Plane-Wave
	A.6.2 Linearly Polarized Plane-Wave
	A.7 Regularized Self-field
	A.8 Solution of the Equation of Motion of a Charged Particle in a Plane-Wave Electromagnetic Field with RR
Appendix B Quantum Electrodynamics
	B.1 Gamma Matrix Algebra
	Product of Gamma Matrices
	Trace of Gamma Matrices
	B.2 Useful Identities for QED
	Trace Identities
	Slashed Quantities Identities
	B.3 The Dirac Spinors
	B.4 The Dirac-Volkov States
	B.5 Nonlinear Compton Scattering
Appendix C Electron Distribution Function
	C.1 Derivation of the Master Equation (5.31摥映數爠eflinkeq:Master55.315)
	C.2 Exact and Approximate Expressions of an(χ) Functions
	C.3 Exact and Approximate Expressions of bn(χ) Functions




نظرات کاربران