ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Circular Economy in the Construction Industry

دانلود کتاب اقتصاد دایره ای در صنعت ساخت و ساز

Circular Economy in the Construction Industry

مشخصات کتاب

Circular Economy in the Construction Industry

ویرایش:  
نویسندگان: , , ,   
سری: The Circular Economy in Sustainable Solid and Liquid Waste Management 
ISBN (شابک) : 1032108967, 9781032108964 
ناشر: CRC Press 
سال نشر: 2021 
تعداد صفحات: 250
[251] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 49 Mb 

قیمت کتاب (تومان) : 48,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Circular Economy in the Construction Industry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اقتصاد دایره ای در صنعت ساخت و ساز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب اقتصاد دایره ای در صنعت ساخت و ساز



اقتصاد دایره ای در صنعت ساخت و ساز منبع ارزشمندی برای محققان، سیاست گذاران، مجریان و دانشجویان مقطع دکترا و کارشناسی ارشد در دانشگاه ها است که وضعیت فعلی زباله های ساخت و ساز و تخریب (C&DW) را تحلیل می کنند. مدیریت، توسعه مواد با استفاده از سرباره، خاکستر بادی، الیاف HDPE، ضایعات زمین و سایر ضایعات، بتن سبز، تثبیت خاک، گردش منابع در بخش های ساختمانی، موفقیت در آزمایش و تولید تجاری، نیازهای آینده، و زمینه های تحقیقاتی آینده. در حالی که C&DW عظیم با تخلیه هدر می رود، پتانسیل بازیافت برای جلوگیری از انتشار گازهای گلخانه ای (GHG) و آلودگی محیط زیست و همچنین ایجاد فرصت های تجاری وجود دارد. گردش منابع در صنعت ساخت و ساز می تواند از طریق ابزارهای سیاستی مناسب، سیستم های مدیریتی و بازیافت با انتخاب موارد زیر به آینده ای امن تر، پایدارتر و از نظر اقتصادی سالم تر کمک کند:

  • <. span>پایداری زنجیره تامین و جمع آوری ضایعات C&D،
  • تکنولوژی جداسازی و بازیافت مناسب،< /li>
  • اجرای ابزارهای سیاست،
  • بهره وری، کنترل کیفیت محصولات بازیافتی و استفاده نهایی مورد نظر،
  • امکان سنجی اقتصادی به عنوان مورد تجاری، تجاری سازی، ایجاد اشتغال.

این کتاب به بسیاری از موضوعات فوق به روشی شفاف توسط متخصصان این حوزه از کشورهای مختلف پرداخته است که برای ذینفعان مرتبط مفید است و توسط متخصصان این حوزه ویرایش شده است.


توضیحاتی درمورد کتاب به خارجی

Circular Economy in the Construction Industry is an invaluable resource for researchers, policymakers, implementers and PhD and Masters-level students in universities analyzing the present status of Construction and Demolition Wastes (C&DW) management, materials development utilizing slag, fly ash, HDPE fibre, geo-wastes, and other wastes, green concrete, soil stabilization, resource circulation in construction sectors, success in experimentation & commercial production, future needs, and future research areas. While huge C&DW is wasted by dumping, there is potential of recycling preventing greenhouse gas (GHG) emissions and environmental pollution as well as creating business opportunities. Circularity of resources in the construction industry can contribute to a more secure, sustainable, and economically sound future through proper policy instruments, management systems, and recycling by selecting the following:

  • Supply chain sustainability and collection of C&D Wastes,
  • Appropriate separation and recycling technology,
  • Enforcement of policy instruments,
  • Productivity, quality control of recycled products and intended end use,
  • Economic feasibility as business case, commercialization, generating employment.

This book addresses most of the above issues in a lucid manner by experts in the field from different countries, which are helpful for the related stakeholders, edited by experts in the field.



فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
Table of Contents
Foreword
Preface
Acknowledgements
Editors
Contributors
Part I: Sustainable Construction Practices and Circular Economy
	Chapter 1: Circular Economy in Combating Construction and Demolition Wastes Including Seismic Debris
		1.1 Introduction
		1.2 Construction and Demolition Waste (C&D) Generation Including Disasters Debris
		1.3 Management and Recycling
		1.4 C&DW Legislation
		1.5 Discussion, Analysis, and Conclusion
		Acknowledgement
		References
	Chapter 2: Circular Economy in Construction:: An Overview with Examples from Materials Research
		2.1 Background
		2.2 Introduction
		2.3 Circular Economy and Construction Industry
		2.4 Examples—Novel Construction Materials
			2.4.1 Limestone-Calcined Clay (LCC) Pozzolana and Cement
			2.4.2 ‘Smart’ Composites
			2.4.3 Recycled PET Fibre Reinforced Cementitious Composite
		2.5 Summary and Discussion
		2.6 Conclusions and Recommendations
		Acknowledgments
		Notes
		References
	Chapter 3: Use of Industrial Waste Slag in the Development of Self-Compacting Concrete for Sustainable Infrastructures
		3.1 Introduction
		3.2 Industrial Slag
		3.3 Self-Compacting Concrete
		3.4 Experimental Program
			3.4.1 Materials
			3.4.2 Mix Design
		3.5 Results and Discussions
			3.5.1 Fresh Properties
				3.5.1.1 Self-Compactability Properties
				3.5.1.2 T 50 Flow Time and V-Funnel Time
			3.5.2 Blocking Ratio (L-box test)
			3.5.3 HRWR Demand
			3.5.4 Hardened Properties
				3.5.4.1 Compressive Strength
		3.6 Conclusions
		References
	Chapter 4: Influence of Functionally Graded Region in Ground Granulated Blast Furnace Slag (GGBS) Layered Composite Concrete
		4.1 Introduction
		4.2 Literature Review
		4.3 Aim of the Study
		4.4 Experimental Program
			4.4.1 Materials
			4.4.2 Mix Proportion
			4.4.3 Specimens Preparation
		4.5 Procedure
		4.6 Results and Discussion
			4.6.1 Compressive Strength
			4.6.2 SEM and EDX Analysis
		4.7 Conclusion
		References
	Chapter 5: Utilization of Fly Ash as a Replacement of Sand in Concrete for Sustainable Construction
		5.1 Introduction
		5.2 Literature Review
		5.3 Materials and Methods
			5.3.1 Cement
			5.3.2 Aggregates
				5.3.2.1 Fine Aggregate
				5.3.2.2 Coarse Aggregate
				5.3.2.3 Fly Ash
			5.3.3 Mix Proportions
			5.3.4 Preparation and Casting of Test Specimens
		5.4 Test Results and Discussion
			5.4.1 Fresh Properties
			5.4.2 Compressive Strength
			5.4.3 Split Tensile Strength
		5.5 Conclusions
		References
	Chapter 6: Properties of Concrete at Elevated Temperature Using Waste HDPE as Fibre and Copper Slag as Mineral Admixture
		6.1 Introduction
		6.2 Literature Review
		6.3 Methodology
		6.4 Result and Discussions
			6.4.1 Slump Test
			6.4.2 Mechanical Properties
				6.4.2.1 Compressive Strength
				6.4.2.2 Split Tensile Strength
				6.4.2.3 Flexural Strength
		6.5 Effect of Elevated Temperature
			6.5.1 Loss of Weight
			6.5.2 Colour Change and Appearance
			6.5.3 Compressive Strength
		6.6 Effect of Elevated Temperature on Durability
			6.6.1 Sorptivity at Elevated Temperatures
			6.6.2 Water Absorption After Applying Elevated Temperature
		6.7 Conclusions
		References
	Chapter 7: Utilization of Geo-Waste in Production of Geo-Fiber Papercrete Bricks
		7.1 Introduction
			7.1.1 Objectives
		7.2 Methodology
			7.2.1 Materials
		7.3 Experimental Procedure
			7.3.1 Preparation of Paper Pulp
			7.3.2 Fabrication of the Mold
			7.3.3 Casting of Papercrete Cubes and Bricks
		7.4 Testing and Results
		7.5 Discussion
		7.6 Conclusion
		Acknowledgement
		References
		IS Codes Referred
	Chapter 8: Effect of Slag Addition on Compressive Strength and Microstructural Features of Fly Ash Based Geopolymer
		8.1 Introduction
		8.2 Materials and Methods
			8.2.1 Materials
			8.2.2 Methods
		8.3 Results and Discussion
		8.4 Conclusions
		Acknowledgements
		References
	Chapter 9: Impacts of Municipal Solid Waste Heavy Metals on Soil Quality: A Case of Visakhapatnam
		9.1 Introduction
		9.2 Study Site History
		9.3 Materials and Methods
			9.3.1 Sample Collection
			9.3.2 Metal Extraction Procedure
			9.3.3 Geo-Accumulation Index (I geo)
		9.4 Results and Discussion
			9.4.1 Lead
			9.4.2 Nickel
			9.4.3 I geo
		9.5 Conclusions
		Acknowledgements
		References
	Chapter 10: Effective Utilization of Industry Solid Waste into the Concrete and Its Management
		10.1 Introduction
		10.2 Materials Properties
			10.2.1 Cement
			10.2.2 Aggregates
			10.2.3 Sugar Cane Bagasse Ash
			10.2.4 Marble Slurry Dust
		10.3 Mixture Proportioning
		10.4 Experimental Methodology
			10.4.1 Test on Fresh Concrete
			10.4.2 Test on Hardened Concrete and Mortar
			10.4.3 Compressive Strength of Concrete
		10.5 Experimental Results and Discussions
			10.5.1 Workability of Fresh Concrete
			10.5.2 Compressive Strength of Concrete
			10.5.3 Compressive Strength of Mortar
		10.6 Conclusions
		References
	Chapter 11: Utilization of Industrial Waste in Normal Concrete: A Review
		11.1 Introduction
		11.2 Fresh Property of Waste Materials
			11.2.1 Workability of Industrial Waste
		11.3 Mechanical Property
			11.3.1 Effect of Waste Materials on Compressive Strength of Concrete
			11.3.2 Effect of Waste Materials on Tensile Strength and Flexural Strength of Concrete
		11.4 Conclusion
		References
	Chapter 12: Greenhouse Effect by Investigating an Internal Combustion Engine (IC Engine) Using Argemone Mexicana (Waste Plant) Biodiesel Blends
		12.1 Introduction
		12.2 Material and Methods
			12.2.1 Oil Preparation Process
			12.2.2 Biodiesel Properties
			12.2.3 Experimental Procedure
		12.3 Results and Discussions
			12.3.1 Performance Analysis
			12.3.2 Emission Analysis
		12.4 Conclusions
		References
	Chapter 13: Fertiliser Plant Phosphogypsum:: Potential Applications in Agriculture and Road Construction
		13.1 Introduction
		13.2 Materials and Methodology
			13.2.1 Experimental Materials
			13.2.2 Experimental Methodology
		13.3 Results and Discussion
			13.3.1 Development of Zypmite Product
				13.3.1.1 Advantages of Zypmite Product
			13.3.2 Phosphogypsum as Road Construction Material
				13.3.2.1 Neutralisation of Phosphogypsum
		13.4 Conclusion
		Acknowledgement
		References
Part II: Waste Utilization and Soil Stabilization
	Chapter 14: Bearing Capacity of Reinforced Soil on Varying Footing Size
		14.1 Introduction
		14.2 Model Footing Test
		14.3 Model Test Results and Discussion
		14.4 Conclusion
		References
	Chapter 15: Improvement of Properties of an Expansive Soil with Induction of Bacteria
		15.1 Introduction
		15.2 Experiment Investigations
			15.2.1 Materials
				15.2.1.1 Soil
				15.2.1.2 Bacteria
		15.3 Tests Conducted
			15.3.1 Atterberg Limits
			15.3.2 Unconfined Compression Strength Test
			15.3.3 Soil Surface Morphology
			15.3.4 pH Value
		15.4 Test Results
		15.5 Plasticity Characteristics
		15.6 Strength
		15.7 pH Value
		15.8 Micro Studies
		15.9 Conclusions
		References
	Chapter 16: Application of Treated Mixed Fruit Wastes in Soil Stabilization
		16.1 Introduction
		16.2 Methodology
		16.3 Atterberg Limits
		16.4 Conclusion
		References
	Chapter 17: Development of Flexible Pavement Cost Models for Weak Subgrade Stabilized with Fly Ash and Lime
		17.1 Introduction
		17.2 Methodology
			17.2.1 Fly Ash
			17.2.2 Use of Lime
			17.2.3 SPSS and Cost Modeling
		17.3 Specifications of IRC
			17.3.1 Subgrade Soil
			17.3.2 Liquid Limit
			17.3.3 Plasticity Index
			17.3.4 Density Requirement
			17.3.5 CBR
		17.4 Economic Analysis
		17.5 Discussion and Conclusion
		References
	Chapter 18: Use of Fly Ash and Lime for Attainment of CN Properties in a Swelling Soil
		18.1 Introduction
		18.2 Experimental Work
			18.2.1 Methods Adopted
		18.3 Tests Results and Discussion
		18.4 Liquid Limit
		18.5 Compressive Strength
		18.6 Swelling Pressure @ OMC
		18.7 Compression Index @ OMC
		18.8 Compression Index @ LL
		18.9 Conclusions
		References
	Chapter 19: Interface Shear Strengths between Bagasse Ash and Geogrid
		19.1 Introduction
		19.2 Testing Materials
			19.2.1 Bagasse Ash
		19.3 Geogrid
		19.4 Testing Methods
		19.5 Results and Discussion
			19.5.1 Direct Shear Test Results
		19.6 Interface Shear Test Results
		19.7 Friction Efficiency Factors (EФ)
		19.8 Conclusion
		Acknowledgment
		References
Part III: Sustainable Green Concrete
	Chapter 20: Experimental Investigation on Geopolymer Concrete with Low-Density Aggregate
		20.1 Introduction
		20.2 Materials and Method
			20.2.1 Fly Ash
			20.2.2 Fine Aggregates
			20.2.3 Coarse Aggregate
			20.2.4 Low-Density Aggregate
		20.3 Alkaline Solutions
		20.4 Mixing, Casting and Curing
		20.5 Result and Discussion
			20.5.1 Workability
			20.5.2 Density ( ρ)
			20.5.3 Compressive Strength (CS)
			20.5.4 Split Tensile Strength
			20.5.5 Flexural Strength
		20.6 Conclusion
		References
	Chapter 21: Strength Development in Ferrochrome Ash-Based Geopolymer Concrete
		21.1 Introduction
		21.2 Materials and Methods
			21.2.1 Materials
			21.2.2 Methods of Manufacturing Geopolymer Concrete
		21.3 Results and Discussions
			21.3.1 Workability
		21.4 Compressive Strength
			21.4.1 Effect of Source Materials and Extra Water
			21.4.2 Effect of Curing Temperature on Strength Development
			21.4.3 Efflorescence
		21.5 Conclusions
		Acknowledgments
		References
	Chapter 22: Investigation on Strength Factor of Composite Concrete Using Quarry Dust and Artificial Aggregates
		22.1 Introduction
		22.2 Materials and Methods
			22.2.1 Quarry Dust
		22.3 Comparison of Coarse Aggregate and Artificial Aggregate
		22.4 Experimental Programme for the Present Study
		22.5 Experimental Work
		22.6 Discussions and Conclusions
		References
	Chapter 23: Clean C&D Waste Material Cycles through BIM-Enhanced Building Stock Examination Practices:: An Austrian Case Study
		23.1 Introduction
			23.1.1 Pre-Demolition Waste Audit
			23.1.2 Optimisation Strategy
		23.2 Objectives
		23.3 Methodology
			23.3.1 Data Capturing
				23.3.1.1 Digital Scanning of Spatial Geometry
				23.3.1.2 Determination of Material Compositions
			23.3.2 Data Modelling
				23.3.2.1 Database Assignment and Query
		23.4 Findings and Result
			23.4.1 Innovative 3D Scan-Technologies
			23.4.2 Manual as-Built BIM Modelling
			23.4.3 Transferability and Efficiency
				23.4.3.1 Level of Development
				23.4.3.2 Structure Intricacy Dependent Performance
		23.5 Summary and Outlook
		References
	Chapter 24: Fly Ash-Based Jute Fiber Reinforced Concrete:: A Go Green Approach for the Concrete Industry
		24.1 Introduction
		24.2 Background of the Study
		24.3 Problem Description
		24.4 Experimental Program
		24.5 Conclusion
		References
Part IV: Energy Recovery and Resource Circulation in Construction
	Chapter 25: A Study on Tensile Strength and Modulus Properties of Concrete Using Industrial Waste Vermiculite and Granite-Fines
		25.1 Introduction
			25.1.1 General
			25.1.2 Present Work
			25.1.3 Research Objectives
			25.1.4 Review of Literature
		25.2 Materials and Methods
			25.2.1 Materials
			25.2.2 Methods
				25.2.2.1 Split Tensile Strength
				25.2.2.2 Test on Modulus of Elasticity
		25.3 Research Methodology
		25.4 Results and Discussion
			25.4.1 General
			25.4.2 Effect of Granite Fines on Split Tensile Strength
			25.4.3 Modulus of Elasticity
			25.4.4 X-Ray Powder Diffraction Analysis
		25.5 Conclusion
		References
	Chapter 26: Eco-Friendly Utilization of Industrial Sludge as a Building Material:: A Study of Steel Industries in the Tarapur Region, Maharashtra
		26.1 Introduction
		26.2 Study Area
		26.3 Materials and Methodology
			26.3.1 Materials
			26.3.2 Methodology
		26.4 Results and Analysis
		26.5 Conclusion
		References
Index




نظرات کاربران