ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Chemical principles: the quest for insight

دانلود کتاب اصول شیمیایی: جستجوی بینش

Chemical principles: the quest for insight

مشخصات کتاب

Chemical principles: the quest for insight

ویرایش: 6. ed 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 1429288973, 1464124671 
ناشر: Freeman 
سال نشر: 2013 
تعداد صفحات: 1129 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 278 مگابایت 

قیمت کتاب (تومان) : 37,000



کلمات کلیدی مربوط به کتاب اصول شیمیایی: جستجوی بینش: علم شیمی



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 15


در صورت تبدیل فایل کتاب Chemical principles: the quest for insight به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اصول شیمیایی: جستجوی بینش نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب اصول شیمیایی: جستجوی بینش

اصول شیمی که برای دروس شیمی عمومی شامل حساب دیفرانسیل و انتگرال نوشته شده است، به دانش آموزان کمک می کند تا با نشان دادن ارتباط بین ایده های شیمیایی اساسی و کاربردهای آنها، بینش شیمیایی را توسعه دهند. برخلاف سایر متون، با تصویری دقیق از اتم شروع می‌شود و سپس به سمت مرز شیمی ساخته می‌شود، و پیوسته نشان می‌دهد که چگونه می‌توان مسائل را حل کرد، درباره طبیعت و ماده فکر کرد و مفاهیم شیمیایی را مانند شیمیدان‌های فعال تجسم کرد. انعطاف‌پذیری در سطح بسیار مهم است و تا حد زیادی از طریق برچسب‌گذاری واضح (جداسازی در کادرها) پوشش حساب دیفرانسیل و انتگرال در متن ایجاد می‌شود: مدرسان این گزینه را دارند که آیا حساب دیفرانسیل و انتگرال را در پوشش موضوعات بگنجانند یا نه. ادغام چند رسانه ای اصول شیمی عمیق تر از هر متن دیگری برای این دوره است. از طریق کتاب الکترونیکی منحصربه‌فرد، ChemPortal جامع، نمادهای Living Graph که متن را به وب متصل می‌کند، و مجموعه کاملی از انیمیشن‌ها، دانش‌آموزان می‌توانند از منابع فراوانی که در دسترس هستند برای کمک به یادگیری و درک عمیق‌تر استفاده کامل کنند.


توضیحاتی درمورد کتاب به خارجی

Written for calculus-inclusive general chemistry courses, Chemical Principles helps students develop chemical insight by showing the connections between fundamental chemical ideas and their applications. Unlike other texts, it begins with a detailed picture of the atom then builds toward chemistry’s frontier, continually demonstrating how to solve problems, think about nature and matter, and visualize chemical concepts as working chemists do. Flexibility in level is crucial, and is largely established through clearly labeling (separating in boxes) the calculus coverage in the text: Instructors have the option of whether to incorporate calculus in the coverage of topics. The multimedia integration of Chemical Principles is more deeply established than any other text for this course. Through the unique eBook, the comprehensive ChemPortal, Living Graph icons that connect the text to the Web, and a complete set of animations, students can take full advantage of the wealth of resources available to them to help them learn and gain a deeper understanding.



فهرست مطالب

Front Cover
Title Page
Copyright Page
Contents in Brief
CONTENTS (with direct page links)
Letter from the Authors (to Instructors)
Preface
FUNDAMENTALS
	Introduction and Orientation
		Chemistry and Society
		Chemistry: A Science at Three Levels
		How Science Is Done
		The Branches of Chemistry
		Mastering Chemistry
	A  Matter and Energy
		A.1 Physical Properties
		A.2 Force
		A.3 Energy
		Exercises
	B  Elements and Atoms
		B.1 Atoms
		B.2 The Nuclear Model
		B.3 Isotopes
		B.4 The Organization of the Elements
		Exercises
	C  Compounds
		C.1 What Are Compounds?
		C.2 Molecules and Molecular Compounds
		C.3 Ions and Ionic Compounds
		Exercises
	D  The Nomenclature of Compounds
		D.1 Names of Cations
		D.2 Names of Anions
		D.3 Names of Ionic Compounds
		TOOLBOX D.1 • How to Name Ionic Compound
		D.4 Names of Inorganic Molecular Compounds
		TOOLBOX D.2 • How to Name Simple Inorganic Molecular Compounds
		D.5 Names of Some Common Organic Compounds
		Exercises
	E  Moles and Molar Masses
		E.1 The Mole
		E.2 Molar Mass
		Exercises
	F  Determination of Chemical Formulas
		F.1 Mass Percentage Composition
		F.2 Determining Empirical Formulas
		F.3 Determining Molecular Formulas
		Exercises
	G  Mixtures and Solutions
		G.1 Classifying Mixtures
		G.2 Separation Techniques
		G.3 Concentration
		G.4 Dilution
		TOOLBOX G.1 • How to Calculate the Volume of Stock Solution Required for a Given Dilution
		Exercises
	H  Chemical Equations
		H.1 Symbolizing Chemical Reactions
		H.2 Balancing Chemical Equations
		Exercises
	I  Aqueous Solutions and Precipitation
		I.1 Electrolytes
		I.2 Precipitation Reactions
		I.3 Ionic and Net Ionic Equations
		I.4 Putting Precipitation to Work
		Exercises
	J  Acids and Bases
		J.1 Acids and Bases in Aqueous Solution
		J.2 Strong and Weak Acids and Bases
		J.3 Neutralization
		Exercises
	K  Redox Reactions
		K.1 Oxidation and Reduction
		K.2 Oxidation Numbers: Keeping Track of Electrons
		TOOLBOX K.1 • How to Assign Oxidation Numbers
		K.3 Oxidizing and Reducing Agents
		K.4 Balancing Simple Redox Equations
		Exercises
	L  Reaction Stoichiometry
		L.1 Mole-to-Mole Predictions
		L.2 Mass-to-Mass Predictions
		TOOLBOX L.1 • How to Carry Out Mass-to-Mass Calculations
		L.3 Volumetric Analysis
		TOOLBOX L.2 • How to Interpret a Titration
		Exercises
	M  Limiting Reactants
		M.1 Reaction Yield
		M.2 The Limits of Reaction
		TOOLBOX M.1 • How to Identify the Limiting Reactant
		M.3 Combustion Analysis
		Exercises
Chapter 1  THE QUANTUM WORLD
	Investigating Atoms
		1.1 The Nuclear Model of the Atom
		1.2 The Characteristics of Electromagnetic Radiation
		1.3 Atomic Spectra
	Quantum Theory
		1.4 Radiation, Quanta, and Photons
		1.5 The Wave–Particle Duality of Matter
		1.6 The Uncertainty Principle
		1.7 Wavefunctions and Energy Levels
		BOX 1.1 • Frontiers of Chemistry: Nanocrystals and Fluorescence Microscopy
	Exercises
Chapter 2  QUANTUM MECHANICS IN ACTION: ATOMS
	The Hydrogen Atom
		2.1 The Principal Quantum Number
		2.2 Atomic Orbitals
		2.3 Electron Spin
		BOX 2.1 • How Do We Know . . . That an Electron Has Spin?
		2.4 The Electronic Structure of Hydrogen
	Many-Electron Atoms
		2.5 Orbital Energies
		2.6 The Building-Up Principle
		TOOLBOX 2.1 • How to Predict the Ground-State Electron Configuration of an Atom
		2.7 Electronic Structure and the Periodic Table
	The Periodicity of Atomic Properties
		2.8 Atomic Radius
		2.9 Ionic Radius
		2.10 Ionization Energy
		2.11 Electron Affinity
		2.12 The Inert-Pair Effect
		2.13 Diagonal Relationships
		2.14 The General Properties of the Elements
	Exercises
Chapter 3  CHEMICAL BONDS
	Ionic Bonds
		3.1 The Ions That Elements Form
		3.2 Lewis Symbols
		3.3 The Energetics of Ionic Bond Formation
		3.4 Interactions Between Ions
	Covalent Bonds
		3.5 Lewis Structures
		3.6 Lewis Structures of Polyatomic Species
		TOOLBOX 3.1 • How to Write the Lewis Structure of a Polyatomic Species
		3.7 Resonance
		3.8 Formal Charge
		TOOLBOX 3.2 • How to Use Formal Charge to Determine the most Likely Lewis Structure
	Exceptions to the Octet Rule
		3.9 Radicals and Biradicals
		BOX 3.1 • What Has This To Do With . . . Staying Alive? Chemical Self-Preservation
		3.10 Expanded Valence Shells
		3.11 The Unusual Structures of Some Group 13 Compounds
	Ionic versus Covalent Bonds
		3.12 Correcting the Covalent Model: Electronegativity
		3.13 Correcting the Ionic Model: Polarizability
	The Strengths and Lengths of Covalent Bonds
		3.14 Bond Strengths
		3.15 Variation in Bond Strength
		3.16 Bond Lengths
		BOX 3.2 • How Do We Know . . . The Length of a Chemical Bond?
	Exercises
MAJOR TECHNIQUE 1 • Infrared Spectroscopy
	Exercises
Chapter 4  MOLECULAR SHAPE AND STRUCTURE
	BOX 4.1 • Frontiers of Chemistry: Drugs By Design and Discovery
	The VSEPR Model
		4.1 The Basic VSEPR Model
		4.2 Molecules with Lone Pairs on the Central Atom
		TOOLBOX 4.1 • How to Use the Vsepr Model
		4.3 Polar Molecules
	Valence-Bond Theory
		4.4 Sigma and Pi Bonds
		4.5 Electron Promotion and the Hybridization of Orbitals
		4.6 Other Common Types of Hybridization
		4.7 Characteristics of Multiple Bonds
	Molecular Orbital Theory
		BOX 4.2 • How Do We Know . . . That Electrons are Not Paired?
		4.8 The Limitations of Lewis’s Theory
		4.9 Molecular Orbitals
		4.10 Electron Configurations of Diatomic Molecules
		BOX 4.3 • How Do We Know . . . The Energies of Molecular Orbitals
		Toolbox 4.2 • How to Determine the Electron Configuration and Bond Order of a Homonuclear Diatomic Species
		4.11 Bonding in Heteronuclear Diatomic Molecules
		4.12 Orbitals in Polyatomic Molecules
	Exercises
MAJOR TECHNIQUE 2 • Ultraviolet and Visible Spectroscopy
	Exercises
Chapter 5  THE PROPERTIES OF GASES
	The Nature of Gases
		5.1 Observing Gases
		5.2 Pressure
		5.3 Alternative Units of Pressure
	The Gas Laws
		5.4 The Experimental Observations
		5.5 Applications of the Ideal Gas Law
		TOOLBOX 5.1 • How to Use the Ideal Gas Law
		5.6 Gas Density
		5.7 The Stoichiometry of Reacting Gases
		5.8 Mixtures of Gases
	Molecular Motion
		5.9 Diffusion and Effusion
		5.10 The Kinetic Model of Gases
		5.11 The Maxwell Distribution of Speeds
		BOX 5.1 • How Do We Know . . . The Distribution of Molecular Speeds?
	Real Gases
		5.12 Deviations from Ideality
		5.13 The Liquefaction of Gases
		5.14 Equations of State of Real Gases
	Exercises
Chapter 6  LIQUIDS AND SOLIDS
	Intermolecular Forces
		6.1 The Origin of Intermolecular Forces
		6.2 Ion–Dipole Forces
		6.3 Dipole–Dipole Forces
		6.4 London Forces
		6.5 Hydrogen Bonding
		6.6 Repulsions
	Liquid Structure
		6.7 Order in Liquids
		6.8 Viscosity and Surface Tension
	Solid Structures
		6.9 Classification of Solids
		BOX 6.1 • How Do We Know . . . What a Surface Looks Like?
		6.10 Molecular Solids
		6.11 Network Solids
		6.12 Metallic Solids
		6.13 Unit Cells
		6.14 Ionic Structures
	The Impact on Materials
		6.15 Liquid Crystals
		6.16 Ionic Liquids
	Exercises
MAJOR TECHNIQUE 3 • X-Ray Diffraction
	Exercises
Chapter 7  INORGANIC MATERIALS
	Metallic Materials
		7.1 The Properties of Metals
		7.2 Alloys
		7.3 Steel
		7.4 Nonferrous Alloys
	Hard Materials
		7.5 Diamond and Graphite
		7.6 Calcium Carbonate
		7.7 Silicates
		7.8 Cement and Concrete
		7.9 Borides, Carbides, and Nitrides
		7.10 Glasses
		7.11 Ceramics
	Materials for New Technologies
		7.12 Bonding in the Solid State
		7.13 Semiconductors
		7.14 Superconductors
		7.15 Luminescent Materials
		7.16 Magnetic Materials
		7.17 Composite Materials
	Nanomaterials
		7.18 The Nature and Uses of Nanomaterials
		7.19 Nanotubes
		7.20 Preparation of Nanomaterials
	Exercises
Chapter 8 THERMODYNAMICS: THE FIRST LAW
	Systems, States, and Energy
		8.1 Systems
		8.2 Work and Energy
		8.3 Expansion Work
		8.4 Heat
		8.5 The Measurement of Heat
		8.6 The First Law
		8.7 A Molecular Interlude: The Origin of Internal Energy
	Enthalpy
		8.8 Heat Transfers at Constant Pressure
		8.9 Heat Capacities at Constant Volume and Constant Pressure
		8.10 A Molecular Interlude: The Origin of the Heat Capacities of Gases
		8.11 The Enthalpy of Physical Change
		8.12 Heating Curves
		BOX 8.1 • How Do We Know . . . The Shape of a Heating Curve?
	The Enthalpy of Chemical Change
		8.13 Reaction Enthalpies
		8.14 The Relation Between ΔH and ΔU
		8.15 Standard Reaction Enthalpies
		8.16 Combining Reaction Enthalpies: Hess’s Law
		TOOLBOX 8.1 • How to Use Hess’s Law
		8.17 Standard Enthalpies of Formation
		8.18 The Born–Haber Cycle
		8.19 Bond Enthalpies
		8.20 The Variation of Reaction Enthalpy with Temperature
		BOX 8.2 • What Has This To Do With . . . The Environment? Alternative Fuels
	The Impact on Technology
		8.21 The Heat Output of Reactions
	Exercises
Chapter 9 THERMODYNAMICS: THE SECOND AND THIRD LAWS
	Entropy
		9.1 Spontaneous Change
		9.2 Entropy and Disorder
		9.3 Changes in Entropy
		9.4 Entropy Changes Accompanying Changes in Physical State
		9.5 A Molecular Interpretation of Entropy
		9.6 The Equivalence of Statistical and Thermodynamic Entropies
		9.7 Standard Molar Entropies
		BOX 9.1 • Frontiers of Chemistry: The Quest for Absolute Zero
		9.8 Standard Reaction Entropies
	Global Changes in Entropy
		9.9 The Surroundings
		9.10 The Overall Change in Entropy
		9.11 Equilibrium
	Gibbs Free Energy
		9.12 Focusing on the System
		9.13 Gibbs Free Energy of Reaction
		9.14 The Gibbs Free Energy and Nonexpansion Work
		9.15 The Effect of Temperature
	Impact on Biology
	9.16 Gibbs Free Energy Changes in Biological Systems
	Exercises
Chapter 10  PHYSICAL EQUILIBRIA
	Phases and Phase Transitions
		10.1 Vapor Pressure
		10.2 Volatility and Intermolecular Forces
		10.3 The Variation of Vapor Pressure with Temperature
		10.4 Boiling
		10.5 Freezing and Melting
		10.6 Phase Diagrams
		10.7 Critical Properties
	Solubility
		10.8 The Limits of Solubility
		10.9 The Like-Dissolves-Like Rule
		10.10 Pressure and Gas Solubility: Henry’s Law
		10.11 Temperature and Solubility
		10.12 The Enthalpy of Solution
		10.13 The Gibbs Free Energy of Solution
	Colligative Properties
		10.14 Molality
		TOOLBOX 10.1 • How to Use the Molality
		10.15 Vapor-Pressure Lowering
		10.16 Boiling-Point Elevation and Freezing-Point Depression
		10.17 Osmosis
		TOOLBOX 10.2 • How to Use Colligative Properties to Determine Molar Mass
	Binary Liquid Mixtures
		10.18 The Vapor Pressure of a Binary Liquid Mixture
		10.19 Distillation
		10.20 Azeotropes
	The Impact on Biology and Materials
		10.21 Colloids
		10.22 Bio-Based and Biomimetic Materials
		BOX 10.1 • Frontiers of Chemistry: Drug Delivery
	Exercises
MAJOR TECHNIQUE 4 • Chromatography
	Exercises
Chapter 11  CHEMICAL EQUILIBRIA
	Reactions at Equilibrium
		11.1 The Reversibility of Reactions
		11.2 Equilibrium and the Law of Mass Action
		11.3 The Thermodynamic Origin of Equilibrium Constants
		11.4 The Extent of Reaction
		11.5 The Direction of Reaction
	Equilibrium Calculations
		11.6 The Equilibrium Constant in Terms of Molar Concentrations of Gases
		11.7 Alternative Forms of the Equilibrium Constant
		11.8 Using Equilibrium Constants
		TOOLBOX 11.1 • How to Set Up and Use an Equilibrium Table
	The Response of Equilibria to Changes in Conditions
		11.9 Adding and Removing Reagents
		11.10 Compressing a Reaction Mixture
		11.11 Temperature and Equilibrium
	Impact on Materials and Biology
		11.12 Catalysts and Haber’s Achievement
		11.13 Homeostasis
	Exercises
Chapter 12  ACIDS AND BASES
	The Nature of Acids and Bases
		12.1 Brønsted–Lowry Acids and Bases
		12.2 Lewis Acids and Bases
		12.3 Acidic, Basic, and Amphoteric Oxides
		12.4 Proton Exchange Between Water Molecules
		12.5 The pH Scale
		12.6 The pOH of Solutions
	Weak Acids and Bases
		12.7 Acidity and Basicity Constants
		12.8 The Conjugate Seesaw
		12.9 Molecular Structure and Acid Strength
		12.10 The Strengths of Oxoacids and Carboxylic Acids
	The pH of Solutions of Weak Acids and Bases
		12.11 Solutions of Weak Acids
		TOOLBOX 12.1 • How to Calculate the pH of a Solution of a Weak Acid
		12.12 Solutions of Weak Bases
		TOOLBOX 12.2 • How to Calculate the pH of a Solution of a Weak Base
		12.13 The pH of Salt Solutions
	Polyprotic Acids and Bases
		12.14 The pH of a Polyprotic Acid Solution
		12.15 Solutions of Salts of Polyprotic Acids
		12.16 The Concentrations of Solute Species
		TOOLBOX 12.3 • How to Calculate the Concentrations of all Species in a Polyprotic Acid Solution
		12.17 Composition and pH
		BOX 12.1 • What Has This To Do With . . .The Environment? Acid Rain and the Gene Pool
	Autoprotolysis and pH
		12.18 Very Dilute Solutions of Strong Acids and Bases
		12.19 Very Dilute Solutions of Weak Acids
	Exercises
Chapter 13  AQUEOUS EQUILIBRIA
	Mixed Solutions and Buffers
		13.1 Buffer Action
		13.2 Designing a Buffer
		13.3 Buffer Capacity
		BOX 13.1 • What Has This To Do With . . . Staying Alive? Physiological Buffers
	Titrations
		13.4 Strong Acid–Strong Base Titrations
		TOOLBOX 13.1 • How to Calculate the pH During a Strong Acid–Strong Base Titration
		13.5 Strong Acid–Weak Base and Weak Acid–Strong Base Titrations
		TOOLBOX 13.2 • How to Calculate the pH During a Titration of a Weak Acid or a Weak Base
		13.6 Acid–Base Indicators
		13.7 Stoichiometry of Polyprotic Acid Titrations
	Solubility Equilibria
		13.8 The Solubility Product
		13.9 The Common-Ion Effect
		13.10 Predicting Precipitation
		13.11 Selective Precipitation
		13.12 Dissolving Precipitates
		13.13 Complex Ion Formation
		13.14 Qualitative Analysis
	Exercises
Chapter 14 ELECTROCHEMISTRY
	Representing Redox Reactions
		14.1 Half-Reactions
		14.2 Balancing Redox Equations
		TOOLBOX 14.1 • How to Balance Complicated Redox Equations
	Galvanic Cells
		14.3 The Structure of Galvanic Cells
		14.4 Cell Potential and Reaction Gibbs Free Energy
		14.5 The Notation for Cells
		TOOLBOX 14.2 • How to Write a Cell Reaction Corresponding to a Cell Diagram
		14.6 Standard Potentials
		14.7 The Electrochemical Series
		14.8 Standard Potentials and Equilibrium Constants
		TOOLBOX 14.3 • How to Calculate Equilibrium Constants from Electrochemical Data
		14.9 The Nernst Equation
		14.10 Ion-Selective Electrodes
	Electrolytic Cells
		14.11 Electrolysis
		14.12 The Products of Electrolys
		TOOLBOX 14.4 • How to Predict the Result of Electrolysis
	The Impact on Materials
		14.13 Applications of Electrolysis
		14.14 Corrosion
		14.15 Practical Cells
		BOX 14.1 • Frontiers of Chemistry: Fuel Cells
	Exercises
Chapter 15  CHEMICAL KINETICS
	Reaction Rates
		15.1 Concentration and Reaction Rate
		BOX 15.1 • How Do We Know . . . What Happens to Atoms During a Reaction?
		15.2 The Instantaneous Rate of Reaction
		15.3 Rate Laws and Reaction Order
	Concentration and Time
		15.4 First-Order Integrated Rate Laws
		15.5 Half-Lives for First-Order Reactions
		15.6 Second-Order Integrated Rate Laws
	Reaction Mechanisms
		15.7 Elementary Reactions
		15.8 The Rate Laws of Elementary Reactions
		15.9 Chain Reactions
		15.10 Rates and Equilibrium
	Models of Reactions
		15.11 The Effect of Temperature
		15.12 Collision Theory
		BOX 15.2 • How Do We Know . . . What Happens During a Molecular Collision?
		15.13 Transition State Theory
	Impact on Materials and Biology: Accelerating Reactions
		15.14 Catalysis
		BOX 15.3 • What Has This To Do With . . . The Environment? Protecting the Ozone Layer
		15.15 Industrial Catalysts
		15.16 Living Catalysts: Enzymes
	Exercises
MAJOR TECHNIQUE 5 • Computation
Chapter 16  THE ELEMENTS: THE MAIN-GROUP ELEMENTS
	Periodic Trends
		16.1 Atomic Properties
		16.2 Bonding Trends
	Hydrogen
		16.3 The Element
		16.4 Compounds of Hydrogen
		BOX 16.1 • What Has This To Do With . . .The Environment? The Greenhouse Effect
	Group 1: The Alkali Metals
		16.5 The Group 1 Elements
		16.6 Compounds of Lithium, Sodium, and Potassium
	Group 2: The Alkaline Earth Metals
		16.7 The Group 2 Elements
		16.8 Compounds of Beryllium, Magnesium, and Calcium
	Group 13: The Boron Family
		16.9 The Group 13 Elements
		16.10 Group 13 Oxides and Halides
		16.11 Boranes and Borohydrides
	Group 14: The Carbon Family
		16.12 The Group 14 Elements
		BOX 16.2 • Frontiers of Chemistry: Self-Assembling Materials
		16.13 Oxides of Carbon and Silicon
		16.14 Other Important Group 14 Compounds
	Group 15: The Nitrogen Family
		16.15 The Group 15 Elements
		16.16 Compounds with Hydrogen and the Halogens
		16.17 Nitrogen Oxides and Oxoacids
		16.18 Phosphorus Oxides and Oxoacids
	Group 16: The Oxygen Family
		16.19 The Group 16 Elements
		16.20 Compounds with Hydrogen
		16.21 Sulfur Oxides and Oxoacids
	Group 17: The Halogens
		16.22 The Group 17 Elements
		16.23 Compounds of the Halogens
	Group 18: The Noble Gases
		16.24 The Group 18 Elements
		16.25 Compounds of the Noble Gases
	Exercises
Chapter 17  THE ELEMENTS: THE d-BLOCK
	The d-Block Elements and Their Compounds
		17.1 Trends in Physical Properties
		17.2 Trends in Chemical Properties
	Selected Elements: A Survey
		17.3 Scandium Through Nickel
		17.4 Groups 11 and 12
	Coordination Compounds
		17.5 Coordination Complexes
		BOX 17.1 • What Has This To Do With . . . Staying Alive? Why We Need to Eat d-Metals
		TOOLBOX 17.1 • How to Name d-Metal Complexes and Coordination Compounds
		17.6 The Shapes of Complexes
		17.7 Isomers
		BOX 17.2 • How Do We Know . . . That a Complex is Optically Active?
	The Electronic Structures of Complexes
		17.8 Crystal Field Theory
		17.9 The Spectrochemical Series
		17.10 The Colors of Complexes
		17.11 Magnetic Properties of Complexes
		17.12 Ligand Field Theory
	Exercises
Chapter 18  NUCLEAR CHEMISTRY
	Nuclear Decay
		18.1 The Evidence for Spontaneous Nuclear Decay
		18.2 Nuclear Reactions
		18.3 The Pattern of Nuclear Stability
		18.4 Predicting the Type of Nuclear Decay
		18.5 Nucleosynthesis
		BOX 18.1 • What Has This To Do With . . . Staying Alive? Nuclear Medicine
	Nuclear Radiation
		18.6 The Biological Effects of Radiation
		18.7 Measuring the Rate of Nuclear Decay
		BOX 18.2 • How Do We Know . . . How Radioactive a Material Is?
		18.8 Uses of Radioisotopes
	Nuclear Energy
		18.9 Mass–Energy Conversion
		18.10 Nuclear Fission
		18.11 Nuclear Fusion
		18.12 The Chemistry of Nuclear Power
	Exercises
Chapter 19  ORGANIC CHEMISTRY I: THE HYDROCARBONS
	Aliphatic Hydrocarbons
		19.1 Types of Aliphatic Hydrocarbons
		TOOLBOX 19.1 • How to Name Aliphatic Hydrocarbons
		19.2 Isomers
		19.3 Properties of Alkanes
		19.4 Alkane Substitution Reactions
		19.5 Properties of Alkenes
		19.6 Electrophilic Addition
	Aromatic Compounds
		19.7 Nomenclature of Arenes
		19.8 Electrophilic Substitution
	Impact on Technology: Fuels
		19.9 Gasoline
		19.10 Coal
	Exercises
MAJOR TECHNIQUE 6 • Mass Spectrometry
	Exercises
Chapter 20  ORGANIC CHEMISTRY II: POLYMERS AND BIOLOGICAL COMPOUNDS
	Common Functional Groups
		20.1 Haloalkanes
		20.2 Alcohols
		20.3 Ethers
		20.4 Phenols
		20.5 Aldehydes and Ketones
		20.6 Carboxylic Acids
		20.7 Esters
		20.8 Amines, Amino Acids, and Amides
		TOOLBOX 20.1 • How to Name Simple Compounds with Functional Groups
	Impact on Technology
		20.9 Addition Polymerization
		20.10 Condensation Polymerization
		20.11 Copolymers
		20.12 Physical Properties of Polymers
	Impact on Biology
		20.13 Proteins
		BOX 20.1 • Frontiers of Chemistry: Conducting Polymers
		20.14 Carbohydrates
		20.15 Nucleic Acids
	Exercises
MAJOR TECHNIQUE 7 • Nuclear Magnetic Resonance
	Exercises
APPENDIX 1: Symbols, Units,
and Mathematical Techniques
	1A Symbols
	1B Units and Unit Conversions
	1C Scientific Notation
	1D Exponents and Logarithms
	1E Equations and Graphs
	1F Calculus
APPENDIX 2: Experimental Data
	2A Thermodynamics Data at 25 °C
	2B Standard Potentials at 25 °C
	2C Ground-State Electron Confi gurations
	2D The Elements
	2E Industrial Chemical Production of Selected Organic and Inorganic Commodities
APPENDIX 3: Nomenclature
	3A The Nomenclature of Polyatomic Ions
	3B Common Names of Chemicals
	3C Traditional Names of Some Common Cations with Variable Charge Numbers
GLOSSARY
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-X-Y-Z
ANSWERS
	Self-Tests B
		Fundamentals
		Chapter 1
		Chapter 2
		Chapter 3
		Chapter 4
		Chapter 5
		Chapter 6
		Major Technique 3
		Chapter 7
		Chapter 8
		Chapter 9
		Chapter 10
		Major Technique 4
		Chapter 11
		Chapter 12
		Chapter 13
		Chapter 14
		Chapter 15
		Chapter 16
		Chapter 17
		Chapter 18
		Chapter 19
		Chapter 20
	Odd-Numbered Exercises
		Fundamentals
		Chapter 1
		Chapter 2
		Chapter 3
		Chapter 4
		Chapter 5
		Chapter 6
		Chapter 7
		Chapter 8
		Chapter 9
		Chapter 10
		Chapter 11
		Chapter 12
		Chapter 13
		Chapter 14
		Chapter 15
		Chapter 16
		Chapter 17
		Chapter 18
		Chapter 19
		Chapter 20
		Major Techniques
Illustration Credits
INDEX
	A
	B
	C
	D
	E
	F
	G
	H-I
	J-K
	L-M
	N
	O-P
	Q
	R
	S
	T
	U
	V
	W-X-Y-Z
Periodic Table of the Elements
Frequently Used Tables and Figures
Key Equations
The Elements
SI Prefixes
Fundamental Constants
Relations Between Units




نظرات کاربران